Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 389-395    https://doi.org/10.1007/s11705-016-1575-1
RESEARCH ARTICLE
2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction
Peibo Hu_FCE-16002-HP,Yahao Dong_FCE-16002-HP,Xiaotian Wu_FCE-16002-HP,Yuping Wei1,2,*()
1. Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A palladium catalyst supported on 2-aminopyridine functionalized cellulose was synthesized and fully characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectrometry. This catalyst can be applied in the Suzuki cross-coupling reaction of aryl halides with arylboronic acids in 50% ethanol to afford biaryls in?good yields, and easily recycled by simple filtration after reaction without the loss of metal Pd.

Keywords cellulose-supported      2-aminopyridine      palladium nanoparticles      ecofriendly catalyst      Suzuki cross-coupling reaction     
Corresponding Author(s): Yuping Wei   
Just Accepted Date: 01 June 2016   Online First Date: 24 June 2016    Issue Date: 23 August 2016
 Cite this article:   
Peibo Hu,Yahao Dong,Xiaotian Wu, et al. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1575-1
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/389
Fig.1  Scheme 1The synthesis of Cell-AMP-Pd
Fig.2  FT-IR spectra of (a) cellulose, (b) Cell-OTs, (c) Cell-AMP, and (d) Cell-AMP-Pd
Fig.3  XPS of Cell-AMP-Pd: (a) wide scan, (b) N 1s and (c) Pd 3d.
Fig.4  TGA analysis of Cell and Cell-AMP-Pd
Fig.5  TEM images of Cell-AMP-Pd (a) before use, (b) after 4 times run and (c) after 5 times run
Entry Solvent Temperature /°C Amount of catalyst /mol% Base Yield /%b)
1 EtOH 50 0.75 K2CO3 90
2 H2O 50 0.75 K2CO3 37
3 DMF 50 0.75 K2CO3 66
4 EtOH : H2O (1:1) 50 0.75 K2CO3 95
5 DMF : H2O (1:1) 50 0.75 K2CO3 91
6 EtOH : H2O (1:1) 25 0.75 K2CO3 81
7 EtOH : H2O (1:1) 50 0.75 K2CO3 92
8 EtOH : H2O (1:1) 80 0.75 K2CO3 75
9 EtOH : H2O (1:1) 50 0.25 K2CO3 65
10 EtOH : H2O (1:1) 50 0.50 K2CO3 85
11 EtOH : H2O (1:1) 50 0.75 K2CO3 94
12 EtOH : H2O (1:1) 50 1.00 K2CO3 87
13 EtOH : H2O (1:1) 50 0.75 Et3N 52
Tab.1  Optimization of the Suzuki cross-coupling reaction using Cell-AMP-Pd as a catalysta)

Entry Aryl halide Arylboronic acid Product Time /h Yield /%b)
1 3.5 95
2 3.5 66
3 3.5 94
4 3.5 80
5 3.5 89
6 3.5 93
7 3.5 91
8 3.5 93
9 3.5 91
10 3.5 51
11 3.5 84
Tab.2  Various Suzuki cross-coupling reactions catalyzed by Cell-AMP-Pda)

Recycle 1st 2nd 3rd 4th 5th
Time /h 3.5 3.5 3.5 3.5 3.5
Yield /%a) 95 95 92 87 42
Tab.3  The reusability of the Cell-AMP-Pd catalyst
1 Yan L F, Zhao Y, Gu Q, Li W. Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. Frontiers of Chemical Science and Engineering, 2012, 6(3): 282–291
https://doi.org/10.1007/s11705-012-0901-5
2 David L K. Biopolymers from Renewable Resources. Berlin: Springer, 1998, 1–29
3 Habibi Y, Lucia A A, Rojas O J. Cellulose nanocrystals: Chemistry, self-Assembly, and applications. Chemical Reviews, 2010, 110(6): 3479–3500
https://doi.org/10.1021/cr900339w
4 Árpád M, Attila P. The use of polysaccharides and derivatives in palladium-catalyzed coupling reactions. Catalysis Science and Technology, 2014, 4(2): 295–310
5 Françoise Q, Agnès C. Cellulose: A new bio-support for aqueous phase catalysts. Chemical Communications, 2001, 1(16): 21–22
6 Navjot J, Ravinderpal K S, Princy G, Satya P. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. International Journal of Biological Macromolecules, 2011, 49(5): 930–935
https://doi.org/10.1016/j.ijbiomac.2011.08.013
7 Ciprian M C, Alexandre F D, Audrey M. Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: Application for catalytic hydrogenation and Heck coupling under mild conditions. Green Chemistry, 2011, 13(2): 288–291
https://doi.org/10.1039/C0GC00326C
8 Kumar N S, Sreedhar B, Reddy K R, Kantam M L. N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(0). Journal of Molecular Catalysis A Chemical, 2006, 252(1): 136–141
9 Song Z Q, Wang H, Niu Y F, Liu X, Han J Y. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Frontiers of Chemical Science and Engineering, 2015, 9(4): 461–466
https://doi.org/10.1007/s11705-015-1543-1
10 Huang Y, Wang T H, Ji M Z, Yang J Z, Zhu C L, Sun D P. Simple preparation of carbonized bacterial cellulose-Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Materials Letters, 2014, 128(10): 93–96
https://doi.org/10.1016/j.matlet.2014.04.128
11 Fu J P, Li D W, Li G H, Huang F L, Wei Q F. Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. Journal of Electroanalytical Chemistry, 2015, 738: 92–99
https://doi.org/10.1016/j.jelechem.2014.11.025
12 Xia H F, Lin D Q, Yao S J. Spherical cellulose-nickel powder composite matrix customized for expanded bed application. Journal of Applied Polymer Science, 2007, 104(2): 740–747
https://doi.org/10.1002/app.25629
13 Mohamed A H, Brahim B, Larbi E F, Ahmad M, Claudio S, Stefano G, Morena N, Mustapha A A. Colloidal nickel(0)-carboxymethyl cellulose particles: A biopolymer-inorganic catalyst for hydrogenation of nitro-aromatics and carbonyl compounds. Catalysis Communications, 2013, 32(5): 92–100
14 Du Q W, Li Y Q. Air-stable, recyclable, and time-efficient diphenylphosphinite cellulose-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura reactions. Beilstein Journal of Organic Chemistry, 2011, 7(6): 378–385
https://doi.org/10.3762/bjoc.7.48
15 Wang X X, Xu Y J, Wang F, Wei Y P. Functionalized cellulose-supported triphenylphosphine and its application in Suzuki cross-coupling reactions. Journal of Applied Polymer Science, 2014, 131(6): 41427–41435
16 Wang X X, Hu P B, Xue F J, Wei Y P. Cellulose-supported N-heterocyclic carbene-palladium catalyst: Synthesis and its applications in the Suzuki cross-coupling reaction. Carbohydrate Polymers, 2014, 114: 476–483
https://doi.org/10.1016/j.carbpol.2014.08.030
17 Keshipour S, Shojaei S, Shaabani A. Palladium nano-particles supported on ethylenediamine functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose (London, England), 2013, 20(2): 973–980
https://doi.org/10.1007/s10570-012-9852-8
18 Sun J W, Huang J T, Zhang J Q, Zheng S H. The synthesis of epoxide resin with alkylaminopyridine functions. Journal of Applied Polymer Science, 1995, 55(13): 1865–1866
https://doi.org/10.1002/app.1995.070551318
19 Zhao P N, Hao J C. 2,6-Diaminopyridine-imprinted polymer and its potency to hair-dye assay using graphene/ionic liquid electrochemical sensor. Biosensors and Bioelectronics, 2015, 64: 277–284
20 Alam T, Tarannum H, Kumar N, Kamaluddin N. Interaction of 2-amino-, 3-amino-, and 4-aminopyridines with chromium and manganese ferrocyanides. Journal of Colloid and Interface Science, 2000, 224(1): 133–139
https://doi.org/10.1006/jcis.1999.6681
21 Yang Y F, Chen Y Y. Sorption behaviors of five kinds of functional polymers bearing aminopyridine groups for Ir(IV) and Ru(IV) ions. Journal of Functional Polymers, 1996, 1: 1–8
22 Mondal P, Banerjee S, Roy A S, Islam S M. In situ prepared mesoporous silica nanosphere supported palladium(II) 2-aminopyridine complex catalyst for Suzuki-Miyaura cross-coupling reaction in water. Journal of Materials Chemistry, 2012, 22(38): 20434–20442
https://doi.org/10.1039/c2jm33835a
23 Lyakin O Y, Ottenbacher R V, Bryliakov K P, Talsi E P. Asymmetric epoxidations with H2O2 on Fe and Mn aminopyridine catalysts: Probing the nature of active species by combined electron paramagnetic resonance and enantioselectivity study. ACS Catalysis, 2012, 2(6): 1196–1202
https://doi.org/10.1021/cs300205n
24 Mohammad B, Hosein A A, Farzaneh G. ChemInform abstract: Synthesis and characterization of the 2-methylaminopyridine-functionalized polystyrene resin-supported Pd(II) catalyst for the Mizoroki-Heck and Sonogashira reactions in water. Journal‒Chinese Chemical Society Taipei, 2014, 61(2): 279–284
25 Motokura K, Itagaki S, Iwasawa Y, Akimitsu M, Toshihide B. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. ChemInform, 2010, 41(41): 1876–1880
26 Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T. Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angewandte Makromolekulare Chemie, 1996, 238(1): 143–163
https://doi.org/10.1002/apmc.1996.052380113
27 Chen Y, Yan Z. Synthesis and characterization of polyacrylonitrile-2-amino-2-thiazoline resin and its sorption behaviors for noble metal ions. Reactive & Functional Polymers, 2003, 55(1): 89–98
https://doi.org/10.1016/S1381-5148(02)00218-3
28 Kurt R, Sanjines R, Karimi A, Lévy, F. Structural and mechanical properties of CNx thin films prepared by magnetron sputtering. Diamond & Related Materials, 2000, 9(s3‒6): 566–572
29 Ji C, Song S, Wang C, Chen H. Preparation and adsorption properties of chelating resins containing 3-aminopyridine and hydrophilic spacer arm for Hg(II). Chemical Engineering Journal, 2010, 165(2): 573–580
https://doi.org/10.1016/j.cej.2010.09.075
30 Yu Z, Chen Y, Wang C, Wei Y M. Immobilization of 5-aminopyridine-2-tetrazole on cross-linked polystyrene for the preparation of a new adsorbent to remove heavy metal ions from aqueous solution. Journal of Hazardous Materials, 2014, 276(9): 129–137
31 Gammon W J, Kraft O, Reilly A C, Holloway B C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon, 2003, 41(10): 1917–1923
https://doi.org/10.1016/S0008-6223(03)00170-2
32 Xiao J L, Lu Z X, Li Y Q. Carboxymethylcellulose-supported palladium nanoparticles generated in situ from palladium(II) carboxymethylcellulose: An efficient and reusable catalyst for Suzuki-Miyaura and Mizoroki-Heck reactions. Industrial & Engineering Chemistry Research, 2015, 54(3): 790–797
https://doi.org/10.1021/ie503075d
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed