Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 360-382    https://doi.org/10.1007/s11705-016-1576-0
REVIEW ARTICLE
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals
Baozhen An1,2,Mingjie Li2,Jialin Wang1,*(),Chaoxu Li2,*()
1. Bioengineering Department, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
2. CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
 Download: PDF(1023 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.

Keywords two-dimension      noble metal      nanocrystal      surface plasmon      controllable synthesis     
Corresponding Author(s): Jialin Wang,Chaoxu Li   
Just Accepted Date: 14 June 2016   Online First Date: 08 July 2016    Issue Date: 23 August 2016
 Cite this article:   
Baozhen An,Mingjie Li,Jialin Wang, et al. Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals[J]. Front. Chem. Sci. Eng., 2016, 10(3): 360-382.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1576-0
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/360
Fig.1  Photographs of the noble metals. Adapted from wikipedia [3]
Fig.2  Characteristics of two-dimensional noble metal nanocrystals with a fcc crystal structure. (a) Typical shapes: triangular, hexagonal and truncated triangular. Scale bar: 1 µm. Modified with permission [58]. Copyright © 2007, American Chemical Society; (b) Atomic structure with stacking sequence: ABCABC; (c) Atomic structure with stacking sequence: ABCABABC. Modified with permission [48]. Copyright © 2015, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. (d and e) Twin planes. Modified with permission [59]. Copyright © 2007, Royal Society of Chemistry
Fig.3  Schematic illustration of reaction pathways to produce different shapes of noble metals. Modified with permission [68]. Copyright © 2007, Wiley-VCH
Metal precursor MW of PVP Molar ratio, PVP : metal precursor Temperature /°C Time Shape, average size, and yield of plates
AgNO3 55000 5 60 21 h triangular, 180 nm, 15%
AgNO3 55000 15 60 21 h triangular, 180 nm, 20%
AgNO3 55000 30 60 21 h triangular, 180 nm, 28%
AgNO3 29000 30 60 21 h triangular, 350 nm, 75%
AgNO3 10000 30 60 21 h triangular, 400 nm, 15%
Na2PdCl4 55000 1.5 80 5 h hexagonal, 40 nm, 10%
Na2PdCl4 55000 5 80 5 h hexagonal, 45 nm, 70%triangular, 40 nm, 20%
Na2PdCl4 55000 15 80 5 h hexagonal, 45 nm, 60%triangular, 25 nm, 30%
Na2PdCl4 29000 15 80 5 h triangular, 10 nm, 40%hexagonal, 40 nm, 20%
Na2PdCl4 10000 15 80 5 h triangular, 50 nm, 70%
Na2PdCl4 55000 5 95 5 h hexagonal, 30 nm, 30%triangular, 30 nm, 20%
HAuCl4 29000 15 65 15 min hexagonal, 800 nm, 30%triangular, 800 nm, 20%
Na2PdCl4 55000 5 80 5 h triangular, 15 nm, 20%
Tab.1  Synthesis of 2D NMNs using PVP as the reducing agent a)
Fig.4  Lateral lengths of Ag nanoplates controlled by irradiation wavelength. (a) Schematic illustration of the synthesis setup using dual-beam excitation; (b) Normalized optical spectra of six different-sized nanoplates; (c) Edge lengths of the Ag nanoplates vs. the primary excitation wavelength coupled with secondary wavelength (340±10 nm); (d?f) TEM images of the Ag nanoprisms with different edge lengths. Modified with permission [116]. Copyright © 2003, Nature Publishing Group
Fig.5  Capping effect of oleylamine to synthesize Rh nanoplates: (a) TEM image; (b) Growth mechanism. Modified with permission [122]. Copyright © 2010, American Chemical Society
Name Number of carboxylate groups Number of carbon between two nearest carboxylate groups Yield of nanoplates
Acetate 1 N/A ~0%
Oxalate 2 0 ~0%
Malonate 2 1 ~80%
Succinate 2 2 ~100%
Citramalate 2 2 ~100%
Tartrate 2 2 ~80%
Glutarate 2 3 ~50%
Adipate 2 4 ~20%
Pimelate 2 5 ~0%
Citrate 3 2 ~100%
Isocitrate 3 2 ~90%
cis-Aconate 3 2 ~90%
Tricarballylate 3 2 ~85%
Trimesic acid trisodium Salt 3 3 ~0%
Tab.2  Capping effect of carboxyl compounds to synthesize Ag nanoplatesa)
Fig.6  Capping effect of CO molecules to synthesize Pd nanosheets: (a) TEM image; (b) Chemisorption of CO on {111} facets and Br- onside {100} facets; (d) Stripping of the CO by applying an oxidation potential. Modified with permission [128]. Copyright © 2010, Nature Publishing Group
Fig.7  Controlling the morphology of 2D NMNs with binary capping agents. (a) and (b): Au nanobelts {110}-oriented at 4 °C and {211}-oriented at 27 °C in the presence of CTAB and SDS. Modified with permission [132]. Copyright © 2008, American Chemical Society. (c)?(g): Shape and size of Ag nanocrystals modulated by the time at which I-was added in the presence of PVP. Modified with permission [137]. Copyright © 2014, Royal Society of Chemistry
Fig.8  Oxidative etching changes the synthesis pathway from “thermodynamic control” to “kinetic control” in the synthesis of 2D NMNs. Modified with permission [138]. Copyright © 2014, Royal Society of Chemistry
Fig.9  Stepwise increases in the lateral size of Ag nanoplates in seed-mediated synthesis. Sample Sn (where n is the step number) was prepared using sample Sn−1 as the seeds in the presence of hydrated hydrazine and sodium citrate. Modified with permission [143]. Copyright © 2007, Elsevier
Fig.10  Bimetallic 2D NMNs. (a and b): Aucore-Agshell triangular bifrustums and Au/Ag content along the nanocrystal edge as characterized by the energy-dispersive-spectroscopy line profile. Modified with permission [153]. Copyright © 2009, American Chemical Society. (c?e): Galvanic displacement reaction to convert Ag nanoplates to (c) porous Ag18Pd2, (d) Ag18Pd1 and (e) nanoplates. Modified with permission [155]. Copyright © 2009, Elsevier
Fig.11  (a) Synthesis of 2D Au nanocrystals templated with zwitterionic vesicle bilayers, modified with permission [160]. Copyright © 2014, Royal Society of Chemistry. (b) Layered double hydroxides, modified with permission [170]. Copyright © 2015, Nature Publishing Group
Fig.12  LSPR of noble metals at the metal/air interface. A higher Q denotes a stronger plasmon resonance. Modified with permission [171]. Copyright © 2009, Elsevier
Fig.13  UV-vis (-NIR) extinction (black), absorption (red), and scattering (blue) spectra of silver nanostructures using discrete dipole approximation calculations. Modified with permission [177]. Copyright © 2006, American Chemical Society
Fig.14  Spatially resolved catalytic activity of single Au nanoplates for the reductive N-deoxygenation of resazurin to resorufin. (a) Fluorescence images of resorufin molecules on Au nanoplates. (b) Catalytic activities of different regions of the Au nanoplates: triangular (top) and hexangular (bottom). (c) Size dependent activity of different regions on the Au nanoplates. Modified with permission [186]. Copyright © 2013, American Chemical Society
Fig.15  Pd particle-Au triangle nanoantenna for hydrogen sensing. (a) Optical-scattering of Pd-Au nanoantenna upon exposure to different pressures of hydrogen. (b) Resonance shift of Pd-Au nanoantenna under different pressures of hydrogen. (c) Pd nanoparticle located 10 nm from the tip of the Au triangle. Modified with permission [232]. Copyright © 2011, Nature Publishing Group
Fig.16  Photothermal effect of Au triangular nanoplates (GTNPs). (a) Comparison of NIR extinction peaks for GTNPs, fat, water and an NIR laser (808 nm). (b) Infrared images of simulated tissue with GTNPs exposed to NIR irradiation for 4 min. (c)?(e) Cellular viability of Hela cancer cells with GTNPs expressed by a green fluorescent protein upon exposure to NIR irradiation for different periods of time. Modified with permission [237]. Copyright © 2015, Royal Society of Chemistry
Fig.17  Au microflakes for polyurethane composite with a strain sensing property. (a) Schematic illustration of Au microflakes in polyurethane film upon stretching and releasing. (b) Atomic force microscope images of the Au microflakes. (c) Strain-controlled in-plane conductive and insulating states in response to finger bending. Modified with permission [100]. Copyright © 2015, Wiley-VCH
1 Holleman A F, Wiberg E. Lehrbuch der anorganischen Chemie. Journal of the American Chemical Society, 1985, 101: 118–118
2 Stahl D A, Landen K. Abbreviations dictionary. CRC Press, 2001, 1167–1167
3 Nobel metal. 2016
4 Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937
https://doi.org/10.1126/science.271.5251.933
5 Maheshwari V, Kane J, Saraf R F. Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Advanced Materials, 2008, 20(2): 284–287
https://doi.org/10.1002/adma.200700999
6 Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R. Architectonic quantum dot solids. Accounts of Chemical Research, 1999, 32(5): 415–423
https://doi.org/10.1021/ar980039x
7 Hu H, Zhou J, Kong Q, Li C. Two-dimensional Au nanocrystals: Shape/size controlling synthesis, morphologies, and applications. Particle & Particle Systems Characterization, 2015, 32: 769–808
8 Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650
https://doi.org/10.1126/science.281.5383.1647
9 Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814
https://doi.org/10.1126/science.1075094
10 Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115
https://doi.org/10.1023/A:1020181423055
11 Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995, 13–20
12 Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800
https://doi.org/10.1021/la9502711
13 Faraday M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857, 147(0): 145–181
https://doi.org/10.1098/rstl.1857.0011
14 Zeng Z, Tan C, Huang X, Bao S, Zhang H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803
https://doi.org/10.1039/C3EE42620C
15 Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444
https://doi.org/10.1038/ncomms2472
16 Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of au nanodots to orderly patterned Au nanodot chains. Small, 2010, 6(4): 513–516
https://doi.org/10.1002/smll.200902001
17 Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45(1): 63–82
https://doi.org/10.1039/C5CS00467E
18 Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2016, 138(4): 1414–1419
https://doi.org/10.1021/jacs.5b12715
19 Fan Z, Zhang X, Yang J, Wu X J, Liu Z, Huang W, Zhang H. Synthesis of 4H/fcc-Au@ metal sulfide core-shell nanoribbons. Journal of the American Chemical Society, 2015, 137(34): 10910–10913
https://doi.org/10.1021/jacs.5b06405
20 Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 2009, 113(25): 10842–10846
https://doi.org/10.1021/jp903821n
21 Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6: 7684
https://doi.org/10.1038/ncomms8684
22 Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735
https://doi.org/10.1126/science.1140484
23 Rodríguez-Fernández J, Pérez-Juste J, García de Abajo F J, Liz-Marzán L M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 2006, 22(16): 7007–7010
https://doi.org/10.1021/la060990n
24 Agarwal M, Mehta H, Candler R N, Chandorkar S A, Kim B, Hopcroft M A, Melamud R, Bahl G, Yama G, Kenny T W, Murmann B. Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. Journal of Applied Physics, 2007, 102(7): 074903
https://doi.org/10.1063/1.2785018
25 Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534
https://doi.org/10.1002/adma.200600475
26 Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677
https://doi.org/10.1002/anie.200454216
27 Li C, Shuford K L, Park Q H, Cai W, Li Y, Lee E J, Cho S O. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268
https://doi.org/10.1002/anie.200604167
28 Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie International Edition, 2008, 47(46): 8901–8904
https://doi.org/10.1002/anie.200802750
29 Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3(5): 667–669
https://doi.org/10.1021/nl0341178
30 Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10): 1957–1962
https://doi.org/10.1021/cm020732l
31 Liu M Z, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 2005, 109(47): 22192–22200
https://doi.org/10.1021/jp054808n
32 Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Advanced Materials, 2012, 24(7): 979–983
https://doi.org/10.1002/adma.201104153
33 Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903
https://doi.org/10.1126/science.1066541
34 Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313
https://doi.org/10.1021/ja043245a
35 Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488
https://doi.org/10.1038/nmat1152
36 Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18(14): 2005–2016
https://doi.org/10.1002/adfm.200800233
37 Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506
https://doi.org/10.1021/ja8018669
38 Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angewandte Chemie International Edition, 2011, 50(51): 12245–12248
https://doi.org/10.1002/anie.201105850
39 Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Letters, 2006, 6(4): 765–768
https://doi.org/10.1021/nl060069q
40 Xiong Y, Cai H, Yin Y, Xia Y. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440(4-6): 273–278
https://doi.org/10.1016/j.cplett.2007.04.074
41 Skrabalak S E, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190
https://doi.org/10.1038/nprot.2007.326
42 Banerjee I A, Yu L T, Matsui H. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Letters, 2003, 3(3): 283–287
https://doi.org/10.1021/nl034038w
43 Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. Journal of Physical Chemistry C, 2007, 111(44): 16080–16082
https://doi.org/10.1021/jp076034b
44 Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chemical Science (Cambridge), 2015, 6(1): 95–111
https://doi.org/10.1039/C4SC02571G
45 Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L, Zhang H. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6: 6571
https://doi.org/10.1038/ncomms7571
46 Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan C L, Zhang H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angewandte Chemie International Edition, 2015, 54(19): 5672–5676
https://doi.org/10.1002/anie.201500993
47 Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664
https://doi.org/10.1002/smll.200801480
48 Hong X, Tan C, Chen J, Xu Z, Zhang H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55
https://doi.org/10.1007/s12274-014-0636-3
49 Lee C, Josephs E A, Shao J, Ye T. Nanoscale chemical patterns on gold microplates. Journal of Physical Chemistry C, 2012, 116(33): 17625–17632
https://doi.org/10.1021/jp304306w
50 Dahanayaka D H, Wang J X, Hossain S, Bumm L A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. Journal of the American Chemical Society, 2006, 128(18): 6052–6053
https://doi.org/10.1021/ja060862l
51 Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced raman scattering experiments. Small, 2009, 5(4): 432–436
https://doi.org/10.1002/smll.200801237
52 Li Q, Liu F, Lu C, Lin J M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. Journal of Physical Chemistry C, 2011, 115(22): 10964–10970
https://doi.org/10.1021/jp200711a
53 Chen Y, Schuhmann W, Hassel A W. Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochemistry Communications, 2009, 11(10): 2036–2039
https://doi.org/10.1016/j.elecom.2009.08.046
54 Li C C, Cai W P, Cao B Q, Sun F Q, Li Y, Kan C X, Zhang L D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 2006, 16(1): 83–90
https://doi.org/10.1002/adfm.200500209
55 Simpson C R, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998, 43(9): 2465–2478
https://doi.org/10.1088/0031-9155/43/9/003
56 Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 2014, 53(7): 1756–1789
https://doi.org/10.1002/anie.201300441
57 Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549–13554
https://doi.org/10.1073/pnas.2232479100
58 Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. Journal of Physical Chemistry C, 2007, 111(28): 10226–10232
https://doi.org/10.1021/jp0719715
59 Xiong Y, Siekkinen A R, Wang J, Yin Y, Kim M J, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602
https://doi.org/10.1039/b705253g
60 Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, 11: 55–75
https://doi.org/10.1039/df9511100055
61 Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554
https://doi.org/10.1021/ic0519382
62 Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
https://doi.org/10.1021/cr030063a
63 Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials, 2005, 15(7): 1197–1208
https://doi.org/10.1002/adfm.200400091
64 Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
https://doi.org/10.1002/anie.200802248
65 Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669–3712
https://doi.org/10.1021/cr100275d
66 Lee H, Jeong K Y, Kang T, Seo M K, Kim B. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6(1): 514–520
https://doi.org/10.1039/C3NR04492K
67 Ye J, Chen C, Van Roy W, Van Dorpe P, Maes G, Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19(32): 325702
https://doi.org/10.1088/0957-4484/19/32/325702
68 Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 2007, 19(20): 3385–3391
https://doi.org/10.1002/adma.200701301
69 Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(2): 454–463
https://doi.org/10.1002/chem.200400927
70 Xie S, Liu X Y, Xia Y. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8(1): 82–96
https://doi.org/10.1007/s12274-014-0674-x
71 Germain V, Li J, Ingert D, Wang Z L, Pileni M P. Stacking faults in formation of silver nanodisks. Journal of Physical Chemistry B, 2003, 107(34): 8717–8720
https://doi.org/10.1021/jp0303826
72 Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679
https://doi.org/10.1021/nl034140t
73 Washio I, Xiong Y, Yin Y, Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749
https://doi.org/10.1002/adma.200600675
74 Bai X, Zheng L, Li N, Dong B, Liu H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Crystal Growth & Design, 2008, 8(10): 3840–3846
https://doi.org/10.1021/cg800549e
75 Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials, 2005, 17(22): 5558–5561
https://doi.org/10.1021/cm051225h
76 Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir, 2012, 28(24): 8965–8970
https://doi.org/10.1021/la204712u
77 Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. Journal of Physical Chemistry B, 2002, 106(28): 7005–7012
https://doi.org/10.1021/jp0204197
78 Lee J H, Kamada K, Enomoto N, Hojo J. Polyhedral gold nanoplate: High fraction synthesis of two-dimensional nanoparticles through rapid heating process. Crystal Growth & Design, 2008, 8(8): 2638–2645
https://doi.org/10.1021/cg0702075
79 Kan C X, Wang G H, Zhu X G, Li C C, Cao B Q. Structure and thermal stability of gold nanoplates. Applied Physics Letters, 2006, 88(7): 071904
https://doi.org/10.1063/1.2175500
80 Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081
https://doi.org/10.1021/nl800910d
81 Xiong Y, Washio I, Chen J, Cai H, Li Z Y, Xia Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570
https://doi.org/10.1021/la061323x
82 Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. Journal of the American Chemical Society, 2013, 135(34): 12544–12547
https://doi.org/10.1021/ja406107u
83 Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, 25(8): 1450–1457
https://doi.org/10.1021/cm303661d
84 Huang W L, Chen C H, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. Journal of Physical Chemistry C, 2007, 111(6): 2533–2538
https://doi.org/10.1021/jp0672454
85 Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chemistry of Materials, 2005, 17(22): 5391–5393
https://doi.org/10.1021/cm0515000
86 Luo Y. Large-scale preparation of single-crystalline gold nanoplates. Materials Letters, 2007, 61(6): 1346–1349
https://doi.org/10.1016/j.matlet.2006.07.048
87 Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 392(1): 131–136
https://doi.org/10.1016/j.colsurfa.2011.09.045
88 Wang J, Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Materials Letters, 2007, 61(19-20): 4149–4151
https://doi.org/10.1016/j.matlet.2007.01.043
89 Guo Z, Zhang Y, Xu A, Wang M, Huang L, Xu K, Gu N. Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study. Journal of Physical Chemistry C, 2008, 112(33): 12638–12645
https://doi.org/10.1021/jp8028962
90 Sun X P, Dong S J, Wang E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angewandte Chemie International Edition, 2004, 43(46): 6360–6363
https://doi.org/10.1002/anie.200461013
91 Roy A K, Park S Y, In I. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26(10): 105601
https://doi.org/10.1088/0957-4484/26/10/105601
92 Lin G, Lu W, Cui W, Jiang L. A simple synthesis method for gold nano-and microplate fabrication using a tree-type multiple-amine head surfactant. Crystal Growth & Design, 2010, 10(3): 1118–1123
https://doi.org/10.1021/cg9008976
93 Chen C C, Hsu C H, Kuo P L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir, 2007, 23(12): 6801–6806
https://doi.org/10.1021/la700377y
94 Bakshi M S, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger M C, Possmayer F, Petersen N O. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 2008, 8(5): 1713–1719
https://doi.org/10.1021/cg8000043
95 Shao Y, Jin Y D, Dong S J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications, 2004, 10(9): 1104–1105
https://doi.org/10.1039/b315732f
96 Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712
https://doi.org/10.1002/adma.201300794
97 Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Materials Chemistry and Physics, 2011, 126(3): 619–627
https://doi.org/10.1016/j.matchemphys.2011.01.008
98 Bolisetty S, Vallooran J J, Adamcik J, Handschin S, Gramm F, Mezzenga R. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361(1): 90–96
https://doi.org/10.1016/j.jcis.2011.05.018
99 Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Advanced Materials, 2013, 25(27): 3694–3700
https://doi.org/10.1002/adma.201300904
100 Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. Advanced Materials, 2015, 27(11): 1945–1950
https://doi.org/10.1002/adma.201405121
101 Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. Journal of Molecular Biology, 2000, 299(3): 725–735
https://doi.org/10.1006/jmbi.2000.3682
102 Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006, 22(2): 577–583
https://doi.org/10.1021/bp0501423
103 Ghodake G S, Deshpande N G, Lee Y P, Jin E S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces, 2010, 75(2): 584–589
https://doi.org/10.1016/j.colsurfb.2009.09.040
104 Wei D, Qian W, Shi Y, Ding S, Xia Y. Mass synthesis of single-crystal gold nanosheets based on chitosan. Carbohydrate Research, 2007, 342(16): 2494–2499
https://doi.org/10.1016/j.carres.2007.07.001
105 Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. Journal of Physical Chemistry B, 2005, 109(32): 15256–15263
https://doi.org/10.1021/jp051449n
106 Baigorri R, Garcia-Mina J M, Aroca R F, Alvarez-Puebla R A. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance. Chemistry of Materials, 2008, 20(4): 1516–1521
https://doi.org/10.1021/cm7028905
107 Klaus T, Joerger R, Olsson E, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611–13614
https://doi.org/10.1073/pnas.96.24.13611
108 Kim J U, Cha S H, Shin K, Jho J Y, Lee J C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Advanced Materials, 2004, 16(5): 459–464
https://doi.org/10.1002/adma.200305613
109 Cha S H, Kim J U, Kim K H, Lee J C. Preparation of gold nanosheets using poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers via photoreduction. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(3): 182–186
https://doi.org/10.1016/j.mseb.2007.03.016
110 Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho P A, Eaton P, de Castro B, Shelnutt J A, Pereira E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2(10): 2209–2216
https://doi.org/10.1039/c0nr00337a
111 Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano, 2010, 4(10): 6196–6202
https://doi.org/10.1021/nn101803m
112 Pienpinijtham P, Han X X, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y. Micrometer-sized gold nanoplates: Starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Physical Chemistry Chemical Physics, 2012, 14(27): 9636–9641
https://doi.org/10.1039/c2cp40330g
113 Zhang J, Li S, Wu J, Schatz G C, Mirkin C A. Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie International Edition, 2009, 48(42): 7787–7791
https://doi.org/10.1002/anie.200903380
114 Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. Journal of Physical Chemistry C, 2007, 111(41): 14962–14967
https://doi.org/10.1021/jp074583b
115 Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344
https://doi.org/10.1021/ja8005258
116 Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
https://doi.org/10.1038/nature02020
117 Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry, 2003, 67(3-4): 291–296
https://doi.org/10.1016/S0969-806X(03)00054-9
118 Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-influence of laser intensity. Chemistry Letters, 2005, 34(4): 476–477
https://doi.org/10.1246/cl.2005.476
119 Belloni J, Mostafavi M, Remita H, Marignier J L, Delcourt M O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22(11): 1239–1255
https://doi.org/10.1039/a801445k
120 Remita S, Mostafavi M, Delcourt M O. Stabilization, growth and reactivity of silver aggregates produced by radiolysis in the presence of edta. New Journal of Chemistry, 1994, 18: 581–588
121 Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Applied Surface Science, 2008, 254(20): 6289–6293
https://doi.org/10.1016/j.apsusc.2008.02.080
122 Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chemistry of Materials, 2010, 22(4): 1273–1275
https://doi.org/10.1021/cm902948v
123 Sun X P, Dong S J, Wang E K. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir, 2005, 21(10): 4710–4712
https://doi.org/10.1021/la047267m
124 Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry, an Asian Journal, 2011, 6(2): 376–379
https://doi.org/10.1002/asia.201000728
125 Kilin D S, Prezhdo O V, Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1-3): 113–116
https://doi.org/10.1016/j.cplett.2008.04.046
126 Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 2011, 133(46): 18931–18939
https://doi.org/10.1021/ja2080345
127 Zhang J L, Du J M, Han B X, Liu Z M, Jiang T, Zhang Z F. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie International Edition, 2006, 45(7): 1116–1119
https://doi.org/10.1002/anie.200503762
128 Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32
https://doi.org/10.1038/nnano.2010.235
129 Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15(31): 6127–6130
https://doi.org/10.1039/c3ce40837j
130 Umar A A, Oyama M, Salleh M M, Majlis B Y. Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly(vinyl pyrrolidone), and poly(ethylene glycol). Crystal Growth & Design, 2010, 10(8): 3694–3698
https://doi.org/10.1021/cg1005456
131 Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998
https://doi.org/10.1021/la702848x
132 Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3(4): 1383–1396
https://doi.org/10.1039/c0nr00814a
133 Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2): 736–741
https://doi.org/10.1021/la052055q
134 Ha T H, Koo H J, Chung B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. Journal of Physical Chemistry C, 2007, 111(3): 1123–1130
https://doi.org/10.1021/jp066454l
135 Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Letters, 2008, 8(8): 2526–2529
https://doi.org/10.1021/nl8016253
136 Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960
https://doi.org/10.1021/nl034312m
137 Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. Maneuvering the growth of silver nanoplates: Use of halide ions to promote vertical growth. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(30): 6165–6170
https://doi.org/10.1039/C4TC00899E
138 Long R, Zhou S, Wiley B J, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chemical Society Reviews, 2014, 43(17): 6288–6310
https://doi.org/10.1039/C4CS00136B
139 Parnklang T, Lamlua B, Gatemala H, Thammacharoen C, Kuimalee S, Lohwongwatana B, Ekgasit S. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Materials Chemistry and Physics, 2015, 153: 127–134
https://doi.org/10.1016/j.matchemphys.2014.12.044
140 Xiong Y J, McLellan J M, Chen J Y, Yin Y D, Li Z Y, Xia Y N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 2005, 127(48): 17118–17127
https://doi.org/10.1021/ja056498s
141 Millstone J E, Metraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214
https://doi.org/10.1002/adfm.200600066
142 Hong S, Acapulco J A I Jr, Jang H J, Kulkarni A S, Park S. Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bulletin of the Korean Chemical Society, 2014, 35(6): 1737–1742
https://doi.org/10.5012/bkcs.2014.35.6.1737
143 Zou X, Ying E, Chen H, Dong S. An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 303(3): 226–234
https://doi.org/10.1016/j.colsurfa.2007.04.009
144 Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. Journal of Colloid and Interface Science, 2010, 348(1): 29–36
https://doi.org/10.1016/j.jcis.2010.04.013
145 Li Z, Yu Y, Chen Z, Liu T, Zhou Z K, Han J B, Li J, Jin C, Wang X. Ultrafast third-order optical non linearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance. Journal of Physical Chemistry C, 2013, 117(39): 20127–20132
https://doi.org/10.1021/jp403308k
146 Huang Y, Ferhan A R, Gao Y, Dandapat A, Kim D H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014, 6(12): 6496–6500
https://doi.org/10.1039/c4nr00834k
147 Chambers S A. Epitaxial film crystallography by high-energy auger and X-ray photoelectron diffraction. Advances in Physics, 1991, 40(4): 357–415
https://doi.org/10.1080/00018739100101502
148 Ledentsov N N, Ustinov V M, Shchukin V A, Kopev P S, Alferov Z I, Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, 32(4): 343–365
https://doi.org/10.1134/1.1187396
149 Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697
https://doi.org/10.1038/nmat1957
150 Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
https://doi.org/10.1021/ja801566d
151 Lim B, Wang J, Camargo P H C, Jiang M, Kim M J, Xia Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters, 2008, 8(8): 2535–2540
https://doi.org/10.1021/nl8016434
152 Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Analytica Chimica Acta, 2013, 805: 95–100
https://doi.org/10.1016/j.aca.2013.10.045
153 Yoo H, Millstone J E, Li S, Jang J W, Wei W, Wu J, Schatz G C, Mirkin C A. Core-shell triangular bifrustums. Nano Letters, 2009, 9(8): 3038–3041
https://doi.org/10.1021/nl901513g
154 Ghosh T, Satpati B. Direct experimental evidence of nucleation and kinetics driven two-dimensional growth of core-shell structures. Journal of Physical Chemistry C, 2013, 117(20): 10825–10833
https://doi.org/10.1021/jp4027404
155 Lee C L, Tseng C M, Wu R B, Wu C C, Syu C M. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 84–87
https://doi.org/10.1016/j.colsurfa.2009.10.004
156 Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C, Syu C C. Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(20): 12706–12714
https://doi.org/10.1016/j.ijhydene.2011.07.064
157 Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777–10781
https://doi.org/10.1021/jp026376b
158 Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007
https://doi.org/10.1021/nl025674h
159 Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086
https://doi.org/10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L
160 Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L. Zwitterionic vesicles with AuCl4-counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50(63): 8783–8786
https://doi.org/10.1039/C4CC03626C
161 Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448
https://doi.org/10.1021/jp0520998
162 Sun Z, Chen X, Wang L, Zhang G, Jing B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 326(1-2): 23–28
https://doi.org/10.1016/j.colsurfa.2008.05.006
163 Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid-liquid interface. New Journal of Chemistry, 2012, 36(10): 2112–2120
https://doi.org/10.1039/c2nj40478h
164 Sanyal A, Sastry M. Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid-liquid interface. Chemical Communications, 2003, 9(11): 1236–1237
https://doi.org/10.1039/B302591H
165 Kajimoto S, Shirasawa D, Horimoto N N, Fukumura H. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media. Langmuir, 2013, 29(19): 5889–5895
https://doi.org/10.1021/la400377k
166 Lou X, Pan H, Zhu S, Zhu C, Liao Y, Li Y, Zhang D, Chen Z. Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 2015, 69: 43–47
https://doi.org/10.1016/j.catcom.2015.05.021
167 Wang W, Gu J, Hua W, Jia X, Xi K. A novel high efficiency composite catalyst: Single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50(64): 8889–8891
https://doi.org/10.1039/C4CC03306J
168 Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2011, 2: 292
https://doi.org/10.1038/ncomms1291
169 Wang C W, Ding H P, Xin G Q, Chen X, Lee Y I, Hao J, Liu H G. Silver nanoplates formed at the air/water and solid/water interfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 340(1-3): 93–98
https://doi.org/10.1016/j.colsurfa.2009.03.003
170 Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications, 2015, 6: 6957
https://doi.org/10.1038/ncomms7957
171 Ru E C L, Etchegoin P G. Principles of surface-enhanced raman spectroscopy. Amsterdam: Elsevier, 2009: 655–663
172 Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30(05): 338–348
https://doi.org/10.1557/mrs2005.96
173 Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. Journal of Raman Spectroscopy : JRS, 2011, 42(9): 1728–1735
https://doi.org/10.1002/jrs.2932
174 Hong S, Shuford K L, Park S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chemistry of Materials, 2011, 23(8): 2011–2013
https://doi.org/10.1021/cm103273c
175 Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038
https://doi.org/10.1002/anie.200604637
176 Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123(11): 114713
https://doi.org/10.1063/1.2046633
177 Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675
https://doi.org/10.1021/jp0608628
178 Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
https://doi.org/10.1002/adma.200401086
179 Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677
https://doi.org/10.1021/jp026731y
180 Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Park Q H, Ihee H, Kim B. Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 2009, 131(2): 758–762
https://doi.org/10.1021/ja807455s
181 Hong X, Wang D, Li Y. Kinked gold nanowires and their SPR/SERS properties. Chemical Communications, 2011, 47(35): 9909–9911
https://doi.org/10.1039/c1cc13651h
182 Jena B K, Raj C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. Journal of Physical Chemistry C, 2007, 111(42): 15146–15153
https://doi.org/10.1021/jp072363s
183 Corma A, Concepción P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo López-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5(9): 775–781
https://doi.org/10.1038/nchem.1721
184 Chen M, Goodman D W. Catalytically active gold: From nanoparticles to ultrathin films. Accounts of Chemical Research, 2006, 39(10): 739–746
https://doi.org/10.1021/ar040309d
185 Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794
https://doi.org/10.1021/ar300209w
186 Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852
https://doi.org/10.1021/ja309948y
187 Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. Journal of Physical Chemistry C, 2008, 112(50): 19801–19817
https://doi.org/10.1021/jp804051e
188 Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single-crystal electrodes towards ethylene-glycol oxidation in sulfuric-acid-solutions. Journal of Electroanalytical Chemistry, 1992, 340(1-2): 213–226
https://doi.org/10.1016/0022-0728(92)80299-J
189 Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie International Edition, 2008, 47(47): 9100–9103
https://doi.org/10.1002/anie.200803202
190 Li L, Wang Z, Huang T, Xie J, Qi L. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335
https://doi.org/10.1021/la1015737
191 Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B, 2000, 104(6): 1153–1175
https://doi.org/10.1021/jp993593c
192 Somorjai G A, Blakely D W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature, 1975, 258(5536): 580–583
https://doi.org/10.1038/258580a0
193 Lee C L, Tseng C M, Wu C C, Chou T C, Syu C M. High activity of hexagonal Ag/Pt nanoshell catalyst for oxygen electroreduction. Nanoscale Research Letters, 2009, 4(3): 193–196
https://doi.org/10.1007/s11671-008-9224-3
194 Jang H J, Hong S, Park S. Shape-controlled synthesis of Pt nanoframes. Journal of Materials Chemistry, 2012, 22(37): 19792–19797
https://doi.org/10.1039/c2jm34187e
195 Lee C L, Tseng C M, Wu R B, Yang K L. Hollow Ag/Pd triangular nanoplate: A novel activator for electroless nickel deposition. Nanotechnology, 2008, 19(21): 215709
https://doi.org/10.1088/0957-4484/19/21/215709
196 Xiong Y, McLellan J M, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie International Edition, 2007, 46(5): 790–794
https://doi.org/10.1002/anie.200604032
197 Smith P A, Nordquist C D, Jackson T N, Mayer T S, Martin B R, Mbindyo J, Mallouk T E. Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77(9): 1399–1401
https://doi.org/10.1063/1.1290272
198 Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science Materials in Electronics, 2010, 21(5): 486–490
https://doi.org/10.1007/s10854-009-9943-y
199 Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7): 525–529
https://doi.org/10.1038/nmat1403
200 Lee S, Im J, Yoo Y, Bitzek E, Kiener D, Richter G, Kim B, Oh S H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nature Communications, 2014, 5: 3033
https://doi.org/10.1038/ncomms4033
201 Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao S X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Communications, 2013, 4: 1742
https://doi.org/10.1038/ncomms2768
202 Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9): 2028–2045
https://doi.org/10.1039/b712179m
203 Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. Journal of Physical Chemistry B, 2003, 107(31): 7607–7617
https://doi.org/10.1021/jp022399e
204 Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S. Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46: 7995–7999
205 Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, Blau W J, Gunko Y K, Kelly J M, Brennan-Fournet M E. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4(55): 29022–29031
https://doi.org/10.1039/C4RA04958F
206 Xu B B, Wang L, Ma Z C, Zhang R, Chen Q D, Lv C, Han B, Xiao X Z, Zhang X L, Zhang Y L, Ueno K, Misawa H, Sun H B. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano, 2014, 8(7): 6682–6692
https://doi.org/10.1021/nn5029345
207 Lin W H, Lu Y H, Hsu Y J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Journal of Colloid and Interface Science, 2014, 418: 87–94
https://doi.org/10.1016/j.jcis.2013.11.082
208 Lai Y, Pan W, Zhang D, Zhan J. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3(5): 2134–2137
https://doi.org/10.1039/c0nr01030h
209 Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk V V. Bimetallic nanostructures as active Raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small, 2009, 5(21): 2460–2466
https://doi.org/10.1002/smll.200900688
210 Li Z, Meng G, Liang T, Zhang Z, Zhu X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science, 2013, 264: 383–390
https://doi.org/10.1016/j.apsusc.2012.10.031
211 Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Sun K, Chen B. Flexible membranes of Ag-nanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6(9): 4781–4788
https://doi.org/10.1039/c3nr06483b
212 Liu H, Yang Q. A two-step temperature-raising process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm, 2011, 13(7): 2281–2288
https://doi.org/10.1039/c0ce00432d
213 Liu H, Yang Q. Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm, 2011, 13(17): 5488–5494
https://doi.org/10.1039/c1ce05351e
214 Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894–4901
https://doi.org/10.1021/cm0615875
215 Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Applied Materials & Interfaces, 2015, 7(32): 18038–18045
https://doi.org/10.1021/acsami.5b04946
216 Liu G, Cai W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22(7): 3177–3184
https://doi.org/10.1039/c1jm14296h
217 Kim Y K, Min D H. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4(14): 6950–6956
https://doi.org/10.1039/c3ra44280b
218 Xia Y, Xiao H. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. Journal of Raman Spectroscopy, 2012, 43(4): 469–473
https://doi.org/10.1002/jrs.3076
219 Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J. Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22(5): 2271–2278
https://doi.org/10.1039/C2JM14823D
220 Zhu C, Meng G, Huang Q, Huang Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212: 389–395
https://doi.org/10.1016/j.jhazmat.2011.07.118
221 Xu P, Zhang B, Mack N H, Doorn S K, Han X, Wang H L. Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20(34): 7222–7226
https://doi.org/10.1039/c0jm01322f
222 Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, Qian W. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors & Bioelectronics, 2013, 43: 193–199
https://doi.org/10.1016/j.bios.2012.11.029
223 Cao B, Liu B, Yang J. Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013, 15(28): 5735–5738
https://doi.org/10.1039/c3ce00076a
224 Sun Y, Lei C, Gosztola D, Haasch R. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates. Langmuir, 2008, 24(20): 11928–11934
https://doi.org/10.1021/la801698s
225 Beeram S R, Zamborini F P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano, 2010, 4(7): 3633–3646
https://doi.org/10.1021/nn1007397
226 Beeram S R, Zamborini F P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. Journal of the American Chemical Society, 2009, 131(33): 11689–11691
https://doi.org/10.1021/ja904387j
227 Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101
https://doi.org/10.1103/PhysRevLett.92.096101
228 Pashaee F, Hou R, Gobbo P, Workentin M S, Lagugne-Labarthet F. Tip-enhanced raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using gaussian-transverse and radially polarized excitations. Journal of Physical Chemistry C, 2013, 117(30): 15639–15646
https://doi.org/10.1021/jp403157v
229 He X, Zhao X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). Applied Surface Science, 2009, 255(16): 7361–7368
https://doi.org/10.1016/j.apsusc.2009.04.002
230 Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007, 7(2): 496–501
https://doi.org/10.1021/nl062901x
231 Liaw J W, Chen J H, Chen C S, Kuo M K. Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17(16): 13532–13540
https://doi.org/10.1364/OE.17.013532
232 Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636
https://doi.org/10.1038/nmat3029
233 Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates. Journal of Physical Chemistry C, 2014, 118(16): 8514–8520
https://doi.org/10.1021/jp408305x
234 Singh A, Shukla R, Hassan S, Bhonde R R, Sastry M. Cytotoxicity and cellular internalization studies of biogenic gold nanotriangles in animal cell lines. International Journal of Green Nanotechnology, 2011, 3(4): 251–263
https://doi.org/10.1080/19430892.2011.633479
235 James K T, O'Toole M G, Patel D N, Zhang G, Gobin A M, Keynton R S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Advances, 2015, 5(17): 12498–12505
https://doi.org/10.1039/C4RA14889D
236 Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G. Biosensing based on light absorption of nanoscaled gold and silver particles. Analytical Chemistry, 2003, 75(24): 6894–6900
https://doi.org/10.1021/ac0346609
237 Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Advances, 2015, 5(98): 80709–80718
https://doi.org/10.1039/C5RA15204F
238 Jiang Y, Horimoto N N, Imura K, Okamoto H, Matsui K, Shigemoto R. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Advanced Materials, 2009, 21(22): 2309–2313
https://doi.org/10.1002/adma.200802312
239 Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects, 2011, 1810: 361–373
240 Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano, 2012, 6(1): 641–650
https://doi.org/10.1021/nn204100n
241 Xie S, Choi S I, Xia X, Xia Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Current Opinion in Chemical Engineering, 2013, 2(2): 142–150
https://doi.org/10.1016/j.coche.2013.02.003
242 Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition, 2012, 51(3): 602–613
https://doi.org/10.1002/anie.201102619
243 Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small, 2015, 11(36): 4745–4752
https://doi.org/10.1002/smll.201500769
244 Bi Y, Lu G. Morphological controlled synthesis and catalytic activities of gold nanocrystals. Materials Letters, 2008, 62(17-18): 2696–2699
https://doi.org/10.1016/j.matlet.2008.01.021
245 Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5: 3093
https://doi.org/10.1038/ncomms4093
246 Lee C L, Syu C M, Chiou H P, Chen C H, Yang H L. High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(17): 10502–10512
https://doi.org/10.1016/j.ijhydene.2011.06.028
247 Wang W, Zhao Y, Ding Y. 2D ultrathin core-shell Pd@Pt-monolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7(28): 11934–11939
https://doi.org/10.1039/C5NR02748A
248 Wang R, Zhang W, He G, Gao P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(39): 16416–16423
https://doi.org/10.1039/C4TA03799E
249 Lee C L, Syu C M, Huang C H, Chiou H P, Chao Y J, Yang C C. Cornered silver and silver-platinum nanodisks: Preparation and promising activity for alkaline oxygen reduction catalysis. Applied Catalysis B: Environmental, 2013, 132-133: 229–236
https://doi.org/10.1016/j.apcatb.2012.11.038
250 Li W, Ma H, Zhang J, Liu X, Feng X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. Journal of Physical Chemistry C, 2009, 113(5): 1738–1745
https://doi.org/10.1021/jp8085123
251 Ghosh S, Teillout A L, Floresyona D, de Oliveira P, Hagege A, Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. International Journal of Hydrogen Energy, 2015, 40(14): 4951–4959
https://doi.org/10.1016/j.ijhydene.2015.01.101
252 Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri A M, Ai-Youbi A O, Sun X. A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60: 13–16
https://doi.org/10.1016/j.electacta.2011.10.066
253 Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. A new preparation of Au nanoplates and their application for glucose sensing. Biosensors & Bioelectronics, 2011, 28(1): 344–348
https://doi.org/10.1016/j.bios.2011.07.041
254 Wiley B J, Lipomi D J, Bao J, Capasso F, Whitesides G M. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Letters, 2008, 8(9): 3023–3028
https://doi.org/10.1021/nl802252r
255 Yun Y J, Park G, Ah C S, Park H J, Yun W S, Ha D H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Applied Physics Letters, 2005, 87(23): 233110
https://doi.org/10.1063/1.2140089
256 Huang J S, Callegari V, Geisler P, Bruening C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150
https://doi.org/10.1038/ncomms1143
257 Li M, Wu X, Zhou J, Kong Q, Li C. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467: 115–120
https://doi.org/10.1016/j.jcis.2016.01.004
[1] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[2] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[3] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[4] Tzu-Lan CHANG, Honglei ZHAN, Danni LIANG, Jun F. LIANG. Nanocrystal technology for drug formulation and delivery[J]. Front. Chem. Sci. Eng., 2015, 9(1): 1-14.
[5] Dongmei WANG, Guodong JIA, Liang XU, Xiaoyan DONG, Yan SUN. Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose beads[J]. Front Chem Eng Chin, 2009, 3(3): 229-234.
[6] WANG Neng, DING Enyong, CHENG Rongshi. Surface modification of cellulose nanocrystals[J]. Front. Chem. Sci. Eng., 2007, 1(3): 228-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed