Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 396-404    https://doi.org/10.1007/s11705-016-1577-z
RESEARCH ARTICLE
Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene
Weixia Wang1,Shuai Zhou1,Zhong Xin1,2,*(),Yaoqi Shi1,3,Shicheng Zhao1
1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
3. Shanghai Key Laboratory of Catalysis Technology for Polyolefin, Shanghai Research Institute of Chemical Industry, Shanghai 200062, China
 Download: PDF(465 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through?a?one-step?melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.

Keywords high melt strength polypropylene (HMSPP)      polydimethylsiloxane (PDMS)      supercritical CO2      foaming behavior     
PACS:     
Fund: 
Corresponding Author(s): Zhong Xin   
Just Accepted Date: 14 June 2016   Online First Date: 22 July 2016    Issue Date: 23 August 2016
 Cite this article:   
Weixia Wang,Shuai Zhou,Zhong Xin, et al. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1577-z
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/396
Agents Mw a)/(g•mol?1) Mn b) Kinematic viscosity c)/cs
PDMS1 7000 5000 50±5
PDMS2 11000 7000 100±5
PDMS3 27000 15000 500±25
PDMS4 32000 20000 1000±50
Tab.1  Physical parameters of PDMS
Fig.1  FTIR spectra of neat iPP and HMSPP
Samples A700/A841 (×100) MFR /(g•(10 min)?1)
iPP 0 6.20
PP0 11.3 0.43
PP1 10.7 0.45
PP2 11.1 0.44
PP3 10.5 0.46
PP4 10.8 0.48
Tab.2  A700/A841 and MFR of neat iPP and HMSPP
Fig.2  Complex viscosity (η*) versus angular frequency (ω) for neat iPP and HMSPP at 200 °C
Fig.3  Fig. 3 Storage modulus (G') versus angular frequency (ω) for neat iPP and HMSPP at 200 °C
Fig.4  Fig. 4 Transient elongational viscosity as a function of time for neat iPP and HMSPP at 190 °C
Fig.5  Cell morphologies of (a) neat iPP and HMSPP: (b) PP0, (c) PP1, (d) PP2, (e) PP3 and (f) PP4 foamed at 155 °C and 12 MPa
Fig.6  Cell size distribution of (a) neat iPP foam and HMSPP foams: (b) PP0, (c) PP1, (d) PP2, (e) PP3 and (f) PP4
Samples Cell density /(cell·cm?3) Average cell diameter /µm Expansion ratio /times
iPP 7.0 × 106 56 2.8
PP0 6.4 × 107 76 37
PP1 3.6 × 108 42 39
PP2 2.6 × 108 48 37
PP3 2.1 × 108 52 37
PP4 1.2 × 108 58 36
PP1-0.5 1.5 × 108 52 38
PP1-1.0 2.0 × 108 50 36
PP1-4.0 2.3 × 108 45 36
Tab.3  Cell density, average cell diameter and expansion rate of neat iPP and HMSPP foams
Fig.7  CO2 solubility in neat iPP and HMSPP at 155 °C and different pressures
Fig.8  Fracture morphologies of (a) neat iPP, (b) PP0, (c) PP1, (d) PP2, (e) PP3 and (f) PP4
Fig.9  Cell morphologies of (a) PP1-0.5, (b) PP1-1.0 and (c) PP1-4.0 foamed at 155 oC and 12 MPa
Fig.10  Cell size distributions of (a) PP1-0.5, (b) PP1-1.0 and (c) PP1-4.0
Fig.11  Fracture morphologies of (a) PP1-0.5, (b) PP1-1.0 and (c) PP1-4.0
1 Oh K, Seo Y, Hong S, Takahara A, Lee K, Seo Y. Dispersion and reaggregation of nanoparticles in the polypropylene copolymer foamed by supercritical carbon dioxide. Physical Chemistry Chemical Physics, 2013, 15(26): 11061–11069
https://doi.org/10.1039/c3cp51068a
2 Lan X, Zhai W, Zheng W. Critical effects of polyethylene addition on the autoclave foaming behavior of polypropylene and the melting behavior of polypropylene foams blown with n-pentane and CO2. Industrial & Engineering Chemistry Research, 2013, 52(16): 5655–5665
https://doi.org/10.1021/ie302899m
3 Ding J, Ma W, Song F, Zhong Q. Effect of nano-calcium carbonate on microcellular foaming of polypropylene. Journal of Materials Science, 2013, 48(6): 2504–2511
https://doi.org/10.1007/s10853-012-7039-1
4 Naguib H, Park C, Reichelt N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91(4): 2661–2668
https://doi.org/10.1002/app.13448
5 Wang K, Wu F, Zhai W, Zheng W. Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. Journal of Applied Polymer Science, 2013, 129(4): 2253–2260
https://doi.org/10.1002/app.38959
6 Chaudhary A, Jayaraman K. Extrusion of linear polypropylene-clay nanocomposite foams. Polymer Engineering and Science, 2011, 51(9): 1749–1756
https://doi.org/10.1002/pen.21961
7 Li Y, Yao Z, Chen Z, Qiu S, Zeng C, Cao K. High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors. Polymer, 2015, 70: 207–214
https://doi.org/10.1016/j.polymer.2015.06.032
8 Li S, Xiao M, Guan Y, Wei D, Xiao H, Zheng A. A novel strategy for the preparation of long chain branching polypropylene and the investigation on foamability and rheology. European Polymer Journal, 2012, 48(2): 362–371
https://doi.org/10.1016/j.eurpolymj.2011.11.015
9 Zhang Z, Wan D, Xing H, Tan H, Wang L, Zheng J, An Y, Tang T. A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer, 2012, 53(1): 121–129
https://doi.org/10.1016/j.polymer.2011.11.033
10 Zhou S, Zhao S, Xin Z. Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polymer Engineering and Science, 2015, 55(2): 251–259
https://doi.org/10.1002/pen.23889
11 Antunes M, Realinho V, Velasco J. Foaming behaviour, structure, and properties of polypropylene nanocomposites foams. Journal of Nanomaterials, 2010, 2010(4): 1–11
https://doi.org/10.1155/2010/306384
12 Bhattacharya S, Gupta R, Jollands M, Bhattacharya S. Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polymer Engineering and Science, 2009, 49(10): 2070–2084
https://doi.org/10.1002/pen.21343
13 Wang M, Ma J, Chu R, Park C, Nanqiao Z. Effect of the introduction of polydimethylsiloxane on the foaming behavior of block-copolymerized polypropylene. Journal of Applied Polymer Science, 2012, 123(5): 2726–2732
https://doi.org/10.1002/app.34854
14 Bing L, Wu Q, Zhou N, Shi B. Batch foam processing of polypropylene/polydimethylsiloxane blends. International Journal of Polymeric Materials, 2010, 60(1): 51–61
https://doi.org/10.1080/00914037.2010.504157
15 Spitael P, Macosko C, McClurg R. Block copolymer micelles for nucleation of microcellular thermoplastic foams. Macromolecules, 2004, 37(18): 6874–6882
https://doi.org/10.1021/ma049712q
16 Prakashan K, Gupta A, Maiti S. Effect of compatibilizer on micromehanical deformations and morphology of dispersion in PP/PDMS blend. Journal of Applied Polymer Science, 2007, 105(5): 2858–2867
https://doi.org/10.1002/app.26510
17 Wu Q, Park C, Zhou N, Zhu W. Effect of temperature on foaming behaviors of homo-and co-polymer polypropylene/polydimethylsiloxane blends with CO2. Journal of Cellular Plastics, 2009, 45(4): 303–319
https://doi.org/10.1177/0021955X09102399
18 Wang W, Zhou S, Xin Z, Shi Y, Zhao S, Meng X. Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents. Journal of Materials Science, 2016, 51(2): 788–796
https://doi.org/10.1007/s10853-015-9402-5
19 Chen J, Liu T, Zhao L, Yuan W. Determination of CO2 solubility in isotactic polypropylene melts with different polydispersities using magnetic suspension balance combined with swelling correction. Thermochimica Acta, 2012, 530: 79–86
https://doi.org/10.1016/j.tca.2011.12.006
20 Kumar V, Suh N. A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990, 30(20): 1323–1329
https://doi.org/10.1002/pen.760302010
21 Deng Q, Fu Z, Sun F, Xu J, Fan Z. Structure and rheological properties of the products of solid-state graft polymerization of styrene in annealed polypropylene reactor granules. Polymer-Plastics Technology and Engineering, 2009, 48(5): 516–524
https://doi.org/10.1080/03602550902824317
22 Lagendijk R, Hogt A, Buijtenhuijs A, Gotsis A. Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer, 2001, 42(25): 10035–10043
https://doi.org/10.1016/S0032-3861(01)00553-5
23 Tian J, Yu W, Zhou C. The preparation and rheology characterization of long chain branching polypropylene. Polymer, 2006, 47(23): 7962–7969
https://doi.org/10.1016/j.polymer.2006.09.042
24 Wood-Adams P, Dealy J, Degroot A, Redwine O. Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules, 2000, 33(20): 7489–7499
https://doi.org/10.1021/ma991533z
25 Xu Z, Zhang Z, Guan Y, Wei D, Zheng A. Investigation of extensional rheological behaviors of polypropylene for foaming. Journal of Cellular Plastics, 2013, 49(4): 317–334
https://doi.org/10.1177/0021955X13477431
26 Auhl D, Stadler F, Muenstedt H. Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene. Macromolecules, 2012, 45(4): 2057–2065
https://doi.org/10.1021/ma202265w
27 Jalbert C, Koberstein J, Yilgor I, Gallagher P, Krukonis V. Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane). Macromolecules, 1993, 26(12): 3069–3074
https://doi.org/10.1021/ma00064a012
28 Zhai W, Kuboki T, Wang L, Park C, Lee E, Naguib H. Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Industrial & Engineering Chemistry Research, 2010, 49(20): 9834–9845
https://doi.org/10.1021/ie101225f
[1] Qingzhuo Wang, Shuang-Yan Tang, Sheng Yang. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening[J]. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
[2] Ruizhao Wang, Xiaoli Gu, Mingdong Yao, Caihui Pan, Hong Liu, Wenhai Xiao, Ying Wang, Yingjin Yuan. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[3] Kata Kiss, Wei Ting Ng, Qingxin Li. Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization[J]. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
[4] Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[5] Seiichi Taguchi. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[6] Andrew Michelmore, Jason D. Whittle, James W. Bradley, Robert D. Short. Where physics meets chemistry: Thin film deposition from reactive plasmas[J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[7] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[8] Mani Abirami, Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[9] Minghui Sun, Chen Chen, Lihua Chen, Baolian Su. Hierarchically porous materials: Synthesis strategies and emerging applications[J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[10] Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research[J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[11] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[12] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[13] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[14] Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed