Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 405-416    https://doi.org/10.1007/s11705-016-1579-x
RESEARCH ARTICLE
Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse
Nadir Abbas1,Godlisten N. Shao1,Syed M. Imran1,Muhammad S. Haider2,3,Hee Taik Kim1,*()
1. Department of Chemical Engineering, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
2. Department of Civil and Environmental Engineering, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
3. Department of Chemical Engineering, University of Gujrat, HH Campus, Punjab, Pakistan
 Download: PDF(495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A sol-gel technique has been developed for the synthesis of a magnetite-silica-titania (Fe3O4-SiO2-TiO2) tertiary nanocomposite with improved photocatalytic properties based on the use of inexpensive titania and silica precursors. The exceptional photocatalytic activity of the resulting materials was demonstrated by using them to photocatalyze the degradation of methylene blue solution. The best formulation achieved 98% methylene blue degradation. An interesting feature of the present work was the ability to magnetically separate and reuse the catalyst. The efficiency of the catalyst remained high during two reuses. The synthesized nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultra-violet-visible spectroscopy, diffuse reflectance spectroscopy, and thermogravimetric analysis. XRD analysis revealed the formation of multicrystalline systems of cubic magnetite and anatase titania crystals. SEM and TEM characterization revealed well-developed and homogeneously dispersed particles of size less than 15 nm. FTIR spectra confirmed the chemical interaction of titania and silica. It was further noticed that the optical properties of the prepared materials were dependent on the relative contents of their constituent metal oxides.

Keywords sol-gel      photocatalysis      magnetic recovery      TiO2      Fe3O4      SiO2     
PACS:     
Fund: 
Corresponding Author(s): Hee Taik Kim   
Just Accepted Date: 08 July 2016   Online First Date: 27 July 2016    Issue Date: 23 August 2016
 Cite this article:   
Nadir Abbas,Godlisten N. Shao,Syed M. Imran, et al. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1579-x
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/405
Sample name Reagent amounts used in synthesis
Fe3O4 /g Na2SiO3 /g TiOCl2 /g HNO3 /g NH4OH /mL
MS 5 35 0 15 20
MST-1 2.3 20 30 30 25
MST-2 9.2 20 30 30 35
Tab.1  Summary of chemical reagents used in the synthesis of MS, MST-1, and MST-2 samples
Sample name Percentage elemental analysis Compound analysis
Fe /% Si /% Ti /% Fe3O4 /% SiO2 /% TiO2 /%
MS 52.63 47.37 0 35.88 64.12 0
MST-1 35.57 18.66 45.77 28.19 25.14 46.67
MST-2 63.08 4.78 32.14 55.3 7.66 37.03
Tab.2  XRF results for elemental compositions of Fe, Si and Ti and compound compositions of Fe3O4, SiO2, and TiO2 in MS, MST-1, and MST-2
Fig.1  XRD of the magnetite, magnetite-silica and magnetite-silica-titania photocatalysts
Fig.2  High resolution XPS spectrum of Fe2p region of MST1-600
Fig.3  FTIR spectra of the samples prepared by modified sol-gel technique
Fig.4  (A) UV-Vis diffused reflectance spectra of Ti-600, MST2-600, MST1-600, MS-600 and M-As; (B) band gaps of photocatalysts obtained from Tauc’s plot derived from the UV-Vis diffused reflectance spectra
Fig.5  SEM images for the (A) M-As, (B) MS-600, (C) MST1-600 and (D) MST2-600 (with an inset of EDX spectrum)
Fig.6  TEM images of (A) magnetite nanoparticles of M, (B) magnetite-silica nanoparticles of MS-600, magnetite-silica-titania nanoparticles of (C) MST-1-600 and (D) MST-2-600
Fig.7  TGA/DTA profiles for the as-synthesized representative sample MST2
Fig.8  (A) Loss in concentration of MB solution during photocatalytic reaction by MS-600, MST1-600 and MST2-600 catalysts as a function of time; (B) Linear correlation between the logarithms of relative concentration of methylene blue solution (Ln C0/C) against the reaction time of the MS-600, MST1-600 and MST2-600 catalyst samples under halogen lamp illumination
Catalyst material Light source Degradation /% Catalyst conc. /(g?L?1) MB conc. /(mol?L?1) Time /h Year of publication/ref.
Fe2O3-TiO2 UV ? 1 1 × 10?5 1.2 2013/[4]
ZrO2-TiO2 UV 94 % ? 1 × 10?4 1.3 2014/[51]
Graphene-TiO2 UV-Vis >90 % 1 3 × 10?5 1 2014/[55]
Kaolinite-TiO2 UV >89 % 0.6 1 × 10?4 1.2 2015/[56]
Fe3O4-TiO2 UV 50%–60% ? 4 × 10?5 1.5 2011/[30]
ZnFe2O4-rGO Halogen lamp (vis) 83 % 0.2 3 × 10?5 2 2014/[57]
TiO2-WO3 Halogen lamp (vis) Good 0.75 ? 1 2014/[58]
Cu-ZnS Halogen lamp (vis) Complete 1 3 × 10?5 3 2014/[59]
LDH clay-TiO2 Halogen lamp (vis) 55% 1 1 × 10?4 ? 2014/[60]
Fe3O4-TiO2-SiO2 Halogen lamp 98 % 1 5 × 10?5 2 Present work
Tab.3  Photocatalytic efficiency for the degradation of MB
Fig.9  (A) Reuse activities of MST1-600 photocatalyst in the photodegradation reaction of MB dye (5 × 10?5 mol/L) after 2 h in the presence of light; (B) Separation of MST1-600 catalyst suspended in DI water by applying a magnetic field
1 Wang P, Shi Q, Shi Y, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society, 2008, 131(1): 182–188
https://doi.org/10.1021/ja806556a
2 Yu K, Yang S, Liu C, Chen H, Li H, Sun C, Boyd S A. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environmental Science & Technology, 2012, 46(13): 7318–7326
https://doi.org/10.1021/es3001954
3 Ali I. New generation adsorbents for water treatment. Chemical Reviews, 2012, 112(10): 5073–5091
https://doi.org/10.1021/cr300133d
4 Ahmed M A, El-Katori E E, Gharni Z H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. Journal of Alloys and Compounds, 2013, 553: 19–29
https://doi.org/10.1016/j.jallcom.2012.10.038
5 Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsina R, Tiwari R N, Kim K S. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 2013, 56: 173–182
https://doi.org/10.1016/j.carbon.2013.01.001
6 Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 2009, 109(12): 6541–6569
https://doi.org/10.1021/cr9001319
7 Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
https://doi.org/10.1016/j.rser.2005.01.009
8 Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535
9 Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13): 2904–2939
https://doi.org/10.1002/anie.201001374
10 Tobaldi D M, Pullar R C, Gualtieri F, Seabra M P, Labrincha J A. Sol-gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders. Chemical Engineering Journal, 2013, 214: 364–375
https://doi.org/10.1016/j.cej.2012.11.018
11 Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal of Physical Chemistry B, 2000, 104(19): 4815–4820
https://doi.org/10.1021/jp993819b
12 Wu M, Liu J, Jin J, Wang C, Huang S, Deng Z, Li Y, Su B L. Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Applied Catalysis B: Environmental, 2014, 150-151: 411–420
https://doi.org/10.1016/j.apcatb.2013.12.037
13 Yuan C, Wu H B, Xie Y, Lou X W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angewandte Chemie International Edition, 2014, 53(6): 1488–1504
https://doi.org/10.1002/anie.201303971
14 Khan M M, Lee J, Cho M H. Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1584–1590
https://doi.org/10.1016/j.jiec.2013.08.002
15 Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology A Chemistry, 2008, 9(1): 1–12
https://doi.org/10.1016/j.jphotochemrev.2007.12.003
16 Llano B, Hidalgo M C, Rios L A, Navio J A. Effect of the type of acid used in the synthesis of titania-silica mixed oxides on their photocatalytic properties. Applied Catalysis B: Environmental, 2014, 150-151: 389–395
https://doi.org/10.1016/j.apcatb.2013.12.039
17 Gawande M B, Pandey R K, Jayaram R V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catalysis Science & Technology, 2012, 2(6): 1113–1125
https://doi.org/10.1039/c2cy00490a
18 Yan X M, Mei P, Xiong L, Gao L, Yang Q, Gong L. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil. Catalysis Science & Technology, 2013, 3(8): 1985–1992
https://doi.org/10.1039/c3cy20732c
19 Guin A K, Nayak S K, Rout T K, Bandyopadhyay N, Sengupta D K. Corrosion behavior of nanohybrid titania-silica composite coating on phosphated steel sheet. Journal of Coatings Technology and Research, 2012, 9(1): 97–106
https://doi.org/10.1007/s11998-011-9321-6
20 Yu X, Liu S, Yu J. Superparamagnetic g-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties. Applied Catalysis B: Environmental, 2011, 104(1-2): 12–20
https://doi.org/10.1016/j.apcatb.2011.03.008
21 Cheng J P, Ma R, Li M, Wu J S, Liu F, Zhang X B. Anatase nanocrystals coating on silica-coated magnetite: Role of polyacrylic acid treatment and its photocatalytic properties. Chemical Engineering Journal, 2012, 210: 80–86
https://doi.org/10.1016/j.cej.2012.08.059
22 Abbas N, Shao G N, Haider M S, Imran S M, Park S S, Kim H T. Sol-gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. Journal of Industrial and Engineering Chemistry, 2016,
https://doi.org/10.1016/j.jiec.2016.05.015
23 Kokate M, Garadkar K, Gole A. One pot synthesis of magnetite-silica nanocomposites: Applications as tags, entrapment matrix and in water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(6): 2022–2029
https://doi.org/10.1039/C2TA00951J
24 Costa A L, Ballarin B, Spegni A, Casoli F, Gardini D. Synthesis of nanostructured magnetic photocatalyst by colloidal approach and spray-drying technique. Journal of Colloid and Interface Science, 2012, 388(1): 31–39
https://doi.org/10.1016/j.jcis.2012.07.077
25 Zhu J, Xie J, Chen M, Jiang D, Wu D. Low temperature synthesis of anatase rare earth doped titania-silica photocatalyst and its photocatalytic activity under solar-light. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 355(1-3): 178–182
https://doi.org/10.1016/j.colsurfa.2009.12.016
26 Harraz F A, Abdel-Salam O E, Mostafa A A, Mohamed R M, Hanafy M. Rapid synthesis of titania-silica nanoparticles photocatalyst by a modified sol-gel method for cyanide degradation and heavy metals removal. Journal of Alloys and Compounds, 2013, 551: 1–7
https://doi.org/10.1016/j.jallcom.2012.10.004
27 Cong Y, Li Z, Zhang Y, Wang Q, Xu Q. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chemical Engineering Journal, 2012, 191: 356–363
https://doi.org/10.1016/j.cej.2012.03.031
28 Patra A K, Dutta A, Bhaumik A. Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthesized by sol-gel pathway: An efficient and reusable heterogeneous catalyst for dehalogenation reaction. ACS Applied Materials & Interfaces, 2012, 4(9): 5022–5028
https://doi.org/10.1021/am301394u
29 Abbas M, Rao B P, Reddy V, Kim C. Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceramics International, 2014, 40(7): 11177–11186
https://doi.org/10.1016/j.ceramint.2014.03.148
30 Wu W, Xiao X, Zhang S, Ren F, Jiang C. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Research Letters, 2011, 6(1): 533
https://doi.org/10.1186/1556-276X-6-533
31 Wang C, Yin L, Zhang L, Kang L, Wang X, Gao R. Magnetic (g-Fe2O3@SiO2)n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. Journal of Physical Chemistry C, 2009, 113(10): 4008–4011
https://doi.org/10.1021/jp809835a
32 Paušová Š, Krýsa J, Jirkovský J, Prevot V, Mailhot G. Preparation of TiO2-SiO2 composite photocatalysts for environmental applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(8): 1129–1135
https://doi.org/10.1002/jctb.4436
33 Tanemura S, Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering. Applied Surface Science, 2003, 212-213: 654–660
https://doi.org/10.1016/S0169-4332(03)00015-1
34 Marfunin A S. Physics of Minerals and Inorganic Materials: An Introduction. Berlin: Springer-Verlag, 1979
35 Yazdani F, Edrissi M. Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Materials Science and Engineering B, 2010, 171(1-3): 86–89
https://doi.org/10.1016/j.mseb.2010.03.077
36 Bickley R I, Gonzalez-Carreno T, Palmisano L. A study of the interaction between iron(III) oxide and titanium(IV) oxide at elevated temperatures. Materials Chemistry and Physics, 1991, 29(1-4): 475–487
https://doi.org/10.1016/0254-0584(91)90042-S
37 Karthikeyan K, Kalpana D, Amaresh S, Lee Y S. Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Advances, 2012, 2(32): 12322–12328
https://doi.org/10.1039/c2ra21715e
38 Ye Y, Kuai L, Geng B. A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. Journal of Materials Chemistry, 2012, 22(36): 19132–19138
https://doi.org/10.1039/c2jm33893a
39 Tian Y, Yu B, Li X, Li K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. Journal of Materials Chemistry, 2011, 21(8): 2476–2481
https://doi.org/10.1039/c0jm02913k
40 Khataee A, Taseidifar M, Khorram S, Sheydaei M, Joo S W. Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 132–139
https://doi.org/10.1016/j.jtice.2015.02.023
41 Yang H, Lu R, Wang L. Study of preparation and properties on solid superacid sulfated titania-silica nanomaterials. Materials Letters, 2003, 57(5-6): 1190–1196
https://doi.org/10.1016/S0167-577X(02)00954-0
42 Nilchi A, Janitabar-Darzi S, Mahjoub A R, Rasouli-Garmarodi S. New TiO2/SiO2 nanocomposites—phase transformations and photocatalytic studies. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 361(1-3): 25–30
https://doi.org/10.1016/j.colsurfa.2010.03.006
43 Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 1994, 98(51): 13669–13679
https://doi.org/10.1021/j100102a038
44 Feng Y, Ji X, Duan J, Zhu J, Jiang J, Ding H, Meng G, Ding R, Liu J, Hu A, Huang X. Synthesis of ZnO@TiO2 core-shell long nanowire arrays and their application on dye-sensitized solar cells. Journal of Solid State Chemistry, 2012, 190(0): 303–308
https://doi.org/10.1016/j.jssc.2012.02.026
45 Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi. B, Basic Research, 1966, 15(2): 627–637
https://doi.org/10.1002/pssb.19660150224
46 Gutiérrez O Y, Fuentes G A, Salcedo C, Klimova T. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts. Catalysis Today, 2006, 116(4): 485–497
https://doi.org/10.1016/j.cattod.2006.06.035
47 Zeng Y, Hao R, Xing B, Hou Y, Xu Z. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46(22): 3920–3922
https://doi.org/10.1039/c0cc00246a
48 Peng L, Xie T, Lu Y, Fan H, Wang D. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Physical Chemistry Chemical Physics, 2010, 12(28): 8033–8041
https://doi.org/10.1039/c002460k
49 Shao G N, Hilonga A, Kim Y N, Kim J K, Elineema G, Quang D V, Jeon S J, Kim H T. Peptization technique in the synthesis of titania-silica composites and their photocatalytic properties. Chemical Engineering Journal, 2012, 198: 122–129
https://doi.org/10.1016/j.cej.2012.05.026
50 Shao G N, Hilonga A, Jeon S J, Lee J E, Elineema G, Quang D V, Kim J K, Kim H T. Influence of titania content on the mesostructure of titania-silica composites and their photocatalytic activity. Powder Technology, 2013, 233: 123–130
https://doi.org/10.1016/j.powtec.2012.08.025
51 Shao G N, Imran S M, Jeon S J, Engole M, Abbas N, Haider M S, Kang S J, Kim H T. Sol-gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue. Powder Technology, 2014, 258: 99–109
https://doi.org/10.1016/j.powtec.2014.03.024
52 Kuo W S, Ho P H. Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 2001, 45(1): 77–83
https://doi.org/10.1016/S0045-6535(01)00008-X
53 Zhang Y, Gan H, Zhang G. A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 2011, 172(2): 936–943
https://doi.org/10.1016/j.cej.2011.07.005
54 López A, Acosta D, Martínez A I, Santiago J. Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technology, 2010, 202(1): 111–117
https://doi.org/10.1016/j.powtec.2010.04.025
55 Yang J, Zhang X, Li B, Liu H, Sun P, Wang C, Wang L, Liu Y. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2014, 584(0): 180–184
https://doi.org/10.1016/j.jallcom.2013.08.203
56 Shao G N, Engole M, Imran S M, Jeon S J, Kim H T. Sol-gel synthesis of photoactive kaolinite-titania: Effect of the preparation method and their photocatalytic properties. Applied Surface Science, 2015, 331: 98–107
https://doi.org/10.1016/j.apsusc.2014.12.199
57 Jumeri F A, Lim H N, Ariffin S N, Huang N M, Teo P S, Fatin S O, Chia C H, Harrison I. Microwave synthesis of magnetically separable ZnFe2O4-reduced graphene oxide for wastewater treatment. Ceramics International, 2014, 40(5): 7057–7065
https://doi.org/10.1016/j.ceramint.2013.12.037
58 Anandan S, Sivasankar T, Lana-Villarreal T. Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics Sonochemistry, 2014, 21(6): 1964–1968
https://doi.org/10.1016/j.ultsonch.2014.02.015
59 Chauhan R, Kumar A, Pal Chaudhary R. Photocatalytic degradation of methylene blue with Cu doped ZnS nanoparticles. Journal of Luminescence, 2014, 145: 6–12
https://doi.org/10.1016/j.jlumin.2013.07.005
60 Seftel E M, Niarchos M, Mitropoulos C, Mertens M, Vansant E F, Cool P. Photocatalytic removal of phenol and methylene-blue in aqueous media using TiO2@LDH clay nanocomposites. Catalysis Today, 2015, 252: 120–127
https://doi.org/10.1016/j.cattod.2014.10.030
[1] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[2] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[3] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[4] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[5] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[6] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[7] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[8] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[9] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[10] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[11] Bettina Stolze,Juliane Titus,Stephan A. Schunk,Andrian Milanov,Ekkehard Schwab,Roger Gläser. Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide[J]. Front. Chem. Sci. Eng., 2016, 10(2): 281-293.
[12] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[13] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[14] Mingyu LIN,Yao Hsiang TSENG,Chin-Pao HUANG. Interactions between nano-TiO2 particles and algal cells at moderate particle concentration[J]. Front. Chem. Sci. Eng., 2015, 9(2): 242-257.
[15] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed