Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 425-431    https://doi.org/10.1007/s11705-016-1581-3
RESEARCH ARTICLE
Synthesis of a cardanol-amine derivative using an ionic liquid catalyst
Atanu Biswas1,*(),Carlucio R. Alves2,Maria T. S. Trevisan3,Roseane L. E. da Silva3,Roselayne F. Furtado4,Zengshe Liu1,H. N. Cheng5,*()
1. USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
2. Chemistry Department, State University of Ceará, Itaperi Campus, 60740-020, Fortaleza-CE, Brazil
3. Chemistry Department, Federal University of Ceará, Pici Campus, 60455-760, Fortaleza-CE, Brazil
4. Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita, Planalto Pici, 60511-110, Fortaleza-CE, Brazil
5. USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
 Download: PDF(240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cardanol is a biobased raw material derived from cashew nut shell liquid. In order to extend its utility, new derivatives and additional applications are useful. In this work cardanol was first epoxidized, and a novel aniline derivative prepared from it under mild reaction conditions with the help of an ionic liquid catalyst. The reaction chemistry was studied by using nuclear magnetic resonance. The resulting aminohydrin adduct showed antioxidant property and should also be a useful synthon for further reactions. As an example, the aminohydrin was shown to undergo a condensation reaction with formaldehyde to form a prepolymer, which could be further reacted to form thermosetting resins.

Keywords cardanol      epoxidation      aminohydrin      aniline      ionic liquid      aniline-formaldehyde     
PACS:     
Fund: 
Corresponding Author(s): Atanu Biswas,H. N. Cheng   
Just Accepted Date: 08 July 2016   Online First Date: 02 August 2016    Issue Date: 23 August 2016
 Cite this article:   
Atanu Biswas,Carlucio R. Alves,Maria T. S. Trevisan, et al. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1581-3
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/425
Fig.1  Scheme 1Formation of cardanol epoxide (reaction 1) and amination (reaction 2) in the presence of an ionic liquid (IL)
Fig.2  1H NMR spectra of cardanol and increasing levels of epoxidation: (a) cardanol with assignments of the triene protons, (b) sample E1, (c) sample E2, and (d) sample E3 in Table 1
Sample Volume of 30% H2O2 /mL Reaction time at 55 °C /h Epoxidation /% (from NMR)
E1 0.38 7 30
E2 0.53 5 55
E3 0.80 5 80
Tab.1  Examples of cardanol epoxidation under different experimental conditionsa)
Fig.3  13C NMR spectra of cardanol and its derivatives: (a) cardanol; (b) cardanol epoxide sample E3, where two large olefinic peaks (*) are found at 133.1 and 117.5 ppm; (c) cardanol aminohydrin sample A1, where the aniline peaks (N) are assigned; (d) reaction product of cardanol aminohydrin and formaldehyde sample F1. Note that E= residual ethyl acetate; S= solvent, CDCl3
Fig.4  
Fig.5  (a) PDSC curves for PAO 8 solution with (blue) and without (red) cardanol aminohydrin (upper plot); (b) Onset of oxidation temperature (measured by PDSC) as a function of the cardanol aminohydrin additive (sample A1) concentration in PAO 8 solution (lower plot)
Fig.6  Scheme 2Formation of cardanol-containing aniline-formaldehyde resin
1 Balachandran V S, Jadhav S R, Vemula P K, John G. Recent advances in cardanol chemistry in a nutshell: From a nut to nanomaterials. Chemical Society Reviews, 2013, 42(2): 427–438
https://doi.org/10.1039/C2CS35344J
2 Mele G, Vasapollo G. Fine chemicals and new hybrid materials from cardanol. Mini-Reviews in Organic Chemistry, 2008, 5(3): 243–253
https://doi.org/10.2174/157019308785161611
3 Vasapollo G, Mele G, Del Sole R. Cardanol-based materials as natural precursors for olefin metathesis. Molecules (Basel, Switzerland), 2011, 16(12): 6871–6882
https://doi.org/10.3390/molecules16086871
4 Voirin C, Caillol S, Sadavarte N V, Tawade B V, Boutevin B, Wadgaonkar P P. Functionalization of cardanol: Towards biobased polymers and additives. Polymer Chemistry, 2014, 5(9): 3142–3162
https://doi.org/10.1039/C3PY01194A
5 Jaillet F, Darroman E, Ratsimihety A, Auvergne R, Boutevin B, Caillol S. New biobased epoxy materials from cardanol. European Journal of Lipid Science and Technology, 2014, 116(1): 63–73
https://doi.org/10.1002/ejlt.201300193
6 Kanehashi S, Yokoyama K, Masuda R, Kidesaki T, Nagai K, Miyakoshi T. Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. Journal of Applied Polymer Science, 2013, 130(4): 2468–2478
https://doi.org/10.1002/app.39382
7 Huang K, Zhang Y, Li M, Lian J, Yang X, Xia J. Preparation of a light color cardanol-based curing agent and epoxy resin composite: Cure-induced phase separation and its effect on properties. Progress in Organic Coatings, 2012, 74(1): 240–247
https://doi.org/10.1016/j.porgcoat.2011.12.015
8 Sultania M, Rai J, Srivastava D. Modeling and simulation of curing kinetics for the cardanol-based vinyl ester resin by means of non-isothermal DSC measurements. Materials Chemistry and Physics, 2012, 132(1): 180–186
https://doi.org/10.1016/j.matchemphys.2011.11.022
9 Suresh K I, Kishanprasad V S. Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Industrial & Engineering Chemistry Research, 2005, 44(13): 4504–4512
https://doi.org/10.1021/ie0488750
10 Kim Y H, An E S, Park S Y, Song B K. Enzymatic epoxidation and polymerization of cardanol obtained from a renewable resource and curing of epoxide-containing polycardanol. Journal of Molecular Catalysis. B, Enzymatic, 2007, 45(1-2): 39–44
https://doi.org/10.1016/j.molcatb.2006.11.004
11 Chen J, Nie X, Liu Z, Mi Z, Zhou Y. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1164–1171
https://doi.org/10.1021/acssuschemeng.5b00095
12 Rao B S, Palanisamy A. Synthesis of biobased low temperature curable liquid epoxy, benzoxazine monomer system from caardanol: Thermal and viscoelastic properties. European Polymer Journal, 2013, 49(8): 2365–2376
https://doi.org/10.1016/j.eurpolymj.2013.05.029
13 Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008, 37(1): 123–150
https://doi.org/10.1039/B006677J
14 Chiappe C, Pieraccini D. Ionic liquids: Solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 2005, 18(4): 275–297
https://doi.org/10.1002/poc.863
15 Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 1999, 99(8): 2071–2084
https://doi.org/10.1021/cr980032t
16 Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry, 2007, 55(22): 9142–9148
https://doi.org/10.1021/jf071692e
17 Rogers R D, Seddon K R. Ionic liquids—Solvents of the future? Science, 2003, 302(5646): 792–793
https://doi.org/10.1126/science.1090313
18 Sheldon R. Catalytic reactions in ionic liquids. Chemical Communications, 2001, 23: 2399–2407
https://doi.org/10.1039/b107270f
19 Biswas A, Sharma B K, Doll K M, Erhan S Z, Willett J L, Cheng H N. Synthesis of an amine-oleate derivative using an ionic liquid catalyst. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8136–8141
https://doi.org/10.1021/jf901401s
20 Darroman E, Bonnot L, Auvergne R, Boutevin B, Caillol S. New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. European Journal of Lipid Science and Technology, 2015, 117(2): 178–189
https://doi.org/10.1002/ejlt.201400248
21 Bishop R R. The use of aniline-formaldehyde resins as curing agents for epoxide resins. Journal of Applied Chemistry, 1956, 6(6): 256–260
https://doi.org/10.1002/jctb.5010060605
22 Maity T, Samanta B C, Dalai S, Banthia A K. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Materials Science and Engineering, 2007, 464(1-2): 38–46
https://doi.org/10.1016/j.msea.2007.01.128
23 Chuang C, Chao L, Huang Y, Hsieh T, Chuang H, Lin S, Ho K. Synthesis and characterization of a novel proton-exchange membrane for fuel cells operating at high temperatures and low humidities. Journal of Applied Polymer Science, 2008, 107(6): 3917–3924
https://doi.org/10.1002/app.27437
24 Knop A, Pilato L A. Phenolic Resins, Chemistry, Applications and Performance, Future Directions. Berlin: Springer-Verlag, 1985
25 Gaca K Z, Parkinson J A, Lue L, Sefcik J. Equilibrium speciation in moderately concentrated formaldehyde-methanol-water solutions investigated using 13C and 1H nuclear magnetic resonance spectroscopy. Industrial & Engineering Chemistry Research, 2014, 53(22): 9262–9271
https://doi.org/10.1021/ie403252x
26 Tomita B, Hatono S. Urea-formaldehyde resins. III. Constitutional characterization by 13C Fourier transform NMR spectroscopy. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16: 2509–2525
27 Mustata F, Bicu I. Epoxy aniline formaldehyde resins modified with resin acids. Polimery, 2001, 46: 534–539
28 Panahi H A, Zadeh M S, Tavangari S, Moniri E, Ghassemi J. Nickel adsorption from environmental samples by ion imprinted aniline-formaldehyde polymer. Iran Journal of Chemistry and Chemical Engineering, 2012, 31: 35–44
29 Kalal H S, Hoveidi H, Thagiof M, Pakizevand N, Almasian M R, Firoozzare M A. Pre-concentration and determination of platinum (IV) in water samples using chelating resin by inductively coupled plasma atomic emission spectroscopy (ICP-AES). International Journal of Environmental of Research, 2012, 6: 739–750
30 Kumar P A, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials, 2007, 143(1-2): 24–32
https://doi.org/10.1016/j.jhazmat.2006.08.067
[1] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[2] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[3] Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik. Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium in gaining access to terpyridines[J]. Front. Chem. Sci. Eng., 2019, 13(3): 586-598.
[4] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[5] Olga A. Ponomareva, Polina A. Shaposhnik, Marina V. Belova, Boris A. Kolozhvari, Irina I. Ivanova. Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 70-76.
[6] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[7] Zimeng HE,Ling YUE,Meng LI,Yazhuo SHANG,Honglai LIU. Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water[J]. Front. Chem. Sci. Eng., 2015, 9(2): 232-241.
[8] Juan XU,Yaquan WANG,Wenping FENG,Yi LIN,Shuhai WANG. Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation[J]. Front. Chem. Sci. Eng., 2014, 8(4): 478-487.
[9] Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
[10] Rui YAO, Hua WANG, Jinyu HAN. Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions[J]. Front Chem Sci Eng, 2012, 6(3): 239-245.
[11] Hideyuki KATSUMATA, Yuta ODA, Satoshi KANECO, Tohru SUZUKI, Kiyohisa OHTA. Determination of aniline derivatives in water samples after preconcentration with oxidized multiwalled carbon nanotubes as solid-phase extraction disk[J]. Front Chem Sci Eng, 2012, 6(3): 270-275.
[12] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[13] Xiaoguang BAI, Yuanbin SHE. Selective epoxidation of linear terminal olefins with metalloporphyrins under mild conditions[J]. Front Chem Eng Chin, 2009, 3(3): 310-313.
[14] Beilei ZHOU, Yanxiong FANG, Hao GU, Saidan ZHANG, Baohua HUANG, Kun ZHANG. Ionic liquid mediated esterification of alcohol with acetic acid[J]. Front Chem Eng Chin, 2009, 3(2): 211-214.
[15] Hiroshi MACHIDA, Ryosuke TAGUCHI, Yoshiyuki SATO, Louw J. FLOURUSSE, Cor J. PETERS, Richard L. SMITH. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations[J]. Front Chem Eng Chin, 2009, 3(1): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed