Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 432-439    https://doi.org/10.1007/s11705-016-1584-0
RESEARCH ARTICLE
The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions
Jie Wang1,Jianjia Liu1,Xuhong Guo1,*(),Liang Yan2,Stephen F. Lincoln2,*()
1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
 Download: PDF(430 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silver nanoparticles (AgNPs) have been synthesized in the presence of polyacrylate through the reduction of silver nitrate by sodium borohydride in aqueous solution. The AgNO3 and polyacrylate carboxylate group concentrations were kept constant at 2.0 × 10−4 and 1.0 × 10−2 mol?L−1, respectively, while the ratio of [NaBH4]/[AgNO3] was varied from 1 to 100. The ultra-violet-visible plasmon resonance spectra of these solutions were found to vary with time prior to stabilizing after 27 d, consistent with changes of AgNP size and distribution within the polyacrylate ensemble occurring. These observations, together with transmission electron microscopic results, show this rearrangement to be greatest among the samples at the lower ratios of [NaBH4]/[AgNO3] used in the preparation, whereas those at the higher ratios showed a more even distribution of smaller AgNP. All ten of the AgNP samples, upon a one thousand-fold dilution, catalyze the reduction of 4-nitrophenol to 4-aminophenol in the temperature range 283.2–303.2 K with a substantial induction time being observed at the lower temperatures.

Keywords silver nanoparticles      polyacrylates      catalysis      mechanism      sodium borohydride     
PACS:     
Fund: 
Corresponding Author(s): Xuhong Guo,Stephen F. Lincoln   
Just Accepted Date: 08 July 2016   Online First Date: 10 August 2016    Issue Date: 23 August 2016
 Cite this article:   
Jie Wang,Jianjia Liu,Xuhong Guo, et al. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1584-0
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/432
Fig.1  Schematic illustration of the formation of a AgNP through NaBH4 reduction of Ag+ dispersed in a polyacrylate ensemble
Fig.2  UV-vis spectra of AgNP solutions in which the initial [NaBH4]/[AgNO3] decreases from 100 to 1 determined 1 d after preparation
Fig.3  Time dependence of the UV-vis spectra of a AgNP sample prepared with [NaBH4]/[AgNO3] = 2
Fig.4  Time dependence of the UV-vis spectrum of a AgNP sample prepared with [NaBH4]/[AgNO3] = 4
Fig.5  Time dependence of the UV-vis spectrum of a AgNP sample prepared with [NaBH4]/[AgNO3] = 100
Fig.6  Time dependence of absorbance at 400 nm as [NaBH4]/[AgNO3] varies from 1 to 100
Fig.7  TEM images and histograms of AgNPs and their size distribution: (a,b) Sample taken 1 day after preparation ([NaBH4]/[AgNO3] = 2); (c,d) Ag sample taken 27 d after preparation ([NaBH4]/[AgNO3] = 2); (e,f) Ag sample taken 27 d after preparation ([NaBH4]/[AgNO3] =10); (g,h) Ag sample taken 27 d after preparation ([NaBH4]/[AgNO3] = 100)
Fig.8  UV-vis absorbance changes at (a) 283. 2 K and (b) 303.2 K for the AgNP catalyzed reduction of 4-NP to 4-AP in the AgNP solutions with [NaBH4]/[AgNO3] = 30 and [AgNP] = 2.0 × 10−7 mol?L−1 (calculated on the basis of single Ag atoms) after dilution. The initial concentrations of 4-NP and NaBH4, were 5.39 × 10−5 and 1.08 × 10−2 mol?L−1, respectively; (c) Variation of induction time and ln(ct/c0) with time at five temperatures, where ct and c0 are [4-NP] mol?L−1 at a time t and zero, respectively
Fig.9  The temperature variation of lnk for the Ag-NP/polyacrylate systems prepared at different [NaBH4]/[AgNO3] ratios
Solutionb) [NaBH4]/[AgNO3] 104×k298.2 K /s−1 ?H /(kJ?mol−1) ?S /(J?mol−1?K1)
1 38.25±0.45 49.3±3.3 ?124±8
2 32.52±0.43 49.8±8.4 ?123±21
3 47.46±0.65 40.7±4.2 ?152±16
4 69.93±0.34 62.4±0.5 ?77.2±0.6
5 65.21±0.41 66.9±3.4 ?62.0±3.1
10 21.90±0.07 51.8±3.2 ?122±7.5
20 14.36±0.17 78.2±2.2 ?37.8±1.1
30 10.53±0.04 50.3±2.1 ?133±5
40 15.21±0.21 58.9±5.3 ?100±9
50 8.897±0.011 68.0±3.7 ?75.0±4.1
100 6.347±0.004 54.6±4.1 ?123±9
Tab.1  Kinetic parametersa) derived for the catalytic reduction of 4-NP to 4-AP by AgNP in a polyacrylate ensemble in aqueous solution
Fig.10  The Langmuir-Hinshelwood mechanism proposed for the AgNP catalyzed reduction of 4-NP to 4-AP by BH4 in aqueous solution. Borohydride and 4-NP simultaneously adsorb reversibly to the AgNP. Borohydride is subsequently converted to B(OH)4 as it loses H? as a consequence of the reduction of 4-NP. The rate determining step characterized by kred, is the reduction of 4-NP to 4-AP which desorbs reversibly from the surface
1 Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics, 2002, 116(15): 6755–6759
https://doi.org/10.1063/1.1462610
2 Wiley B J, Im S H, Li Z, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675
https://doi.org/10.1021/jp0608628
3 Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics, 2007, 1(11): 641–648
https://doi.org/10.1038/nphoton.2007.223
4 Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angewandte Chemie International Edition, 2009, 48(1): 60–103
https://doi.org/10.1002/anie.200802248
5 Cathcart N, Frank A J, Kitaev V. Silver nanoparticles with planar twinned defects: Effect of halides for precise tuning of plasmon resonance maxima from 400 to>900 nm. Chemical Communications, 2009, 46(46): 7170–7172
https://doi.org/10.1039/b916902d
6 Halas N J, Lal S, Chang W, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews, 2011, 111(6): 3913–3961
https://doi.org/10.1021/cr200061k
7 Chang W, Willingham B, Slaughter L S, Dominguez-Medina S, Swanglap P, Link S. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Accounts of Chemical Research, 2012, 45(11): 1936–1945
https://doi.org/10.1021/ar200337u
8 Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
https://doi.org/10.1021/cr030063a
9 Osborne C A, Endean T B D, Jarvo E R. Silver-catalyzed enantioselective propargylation reactions of N-sulfonylketimines. Organic Letters, 2015, 17(21): 5340–5343
https://doi.org/10.1021/acs.orglett.5b02692
10 Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir, 2005, 21(26): 12229–12234
https://doi.org/10.1021/la052120w
11 Köhler J, Abahmane L, Wagner J, Albert J, Mayer G. Preparation of metal nanoparticles with varied composition for catalytic applications in microreactors. Chemical Engineering Science, 2008, 63(20): 5048–5055
https://doi.org/10.1016/j.ces.2007.11.038
12 Wang Y, Biridar A V, Wang G, Sharma K K, Duncan C T, Rangan S, Asefa T. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(35): 10735–10743
https://doi.org/10.1002/chem.201000354
13 Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. Journal of Physical Chemistry C, 2010, 114(19): 8814–8820
https://doi.org/10.1021/jp101125j
14 Jia C, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Physical Chemistry Chemical Physics, 2011, 13(7): 2457–2487
https://doi.org/10.1039/c0cp02680h
15 Butun S, Sahiner N. A versatile hydrogel template for metal nanoparticle preparation and their use in catalysis. Polymer, 2011, 52(21): 4834–4840
https://doi.org/10.1016/j.polymer.2011.08.021
16 Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. Catalysis, 2011, 1(8): 908–916
17 Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Industrial & Engineering Chemistry Research, 2011, 50(24): 13848–13853
https://doi.org/10.1021/ie2017306
18 Santos K D O, Elias W C, Signori A M, Giacomelli F C, Yang H, Domingos J B. Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. Journal of Physical Chemistry C, 2012, 116(7): 4594–4604
https://doi.org/10.1021/jp2087169
19 Antonels N C, Meijboom R. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4–nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir, 2013, 29(44): 13433–13442
https://doi.org/10.1021/la402885k
20 Liu J, Wang J, Zhu Z, Li L, Guo X, Lincoln S F, Prud’homme R K. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes. AIChE Journal, 2014, 60(6): 1977–1982
https://doi.org/10.1002/aic.14465
21 Kaur R, Giordino C, Gradzielski M, Metha S K. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chemistry, an Asian Journal, 2014, 9(1): 189–198
https://doi.org/10.1002/asia.201300809
22 Cozzoli P D, Comparelli R, Fanizza E, Curri M L, Agostiano A, Laub D. Photocatalytic synthesis of AgNPs stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society, 2004, 126(12): 3868–3879
https://doi.org/10.1021/ja0395846
23 Armelao L, Bottaro G, Campostrini R, Gialanella S, Ischia M, Poli F, Tondello E. Synthesis and structural evolution of mesoporous silica-silver nanocomposites. Nanotechnology, 2007, 18(15): 155606–155614
https://doi.org/10.1088/0957-4484/18/15/155606
24 Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892
https://doi.org/10.1021/ar200044b
25 Mullen D G, Banaszak Holl M M. Heterogeneous ligand-nanoparticle distributions: A major obstacle to scientific understanding and commercial translation. Accounts of Chemical Research, 2011, 44(11): 1135–1145
https://doi.org/10.1021/ar1001389
26 Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325
https://doi.org/10.1002/smll.200701295
27 Bronstein L M, Shifrina Z B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chemical Reviews, 2011, 111(9): 5301–5344
https://doi.org/10.1021/cr2000724
28 Wang T C, Rubner M F, CohenR E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir, 2002, 18(8): 3370–3375
https://doi.org/10.1021/la015725a
29 Zheng J, Stevenson M S, Hikida R S, Van Patten P G. Influence of pH on dendrimer-protected nanoparticles. Journal of Physical Chemistry B, 2002, 106(6): 1252–1255
https://doi.org/10.1021/jp013108p
30 Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? Journal of Physical Chemistry B, 2004, 108(3): 945–951
https://doi.org/10.1021/jp037018r
31 Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
https://doi.org/10.1002/adma.200401086
32 Wu M, Kuga S, Huang Y. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir, 2008, 24(18): 10494–10497
https://doi.org/10.1021/la801602k
33 Dong X, Ji X, Wu H, Zhao L, Li J, Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. Journal of Physical Chemistry C, 2009, 113(16): 6573–6576
https://doi.org/10.1021/jp900775b
34 Chen B, Jiao X, Chen D. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Crystal Growth & Design, 2010, 10(8): 3378–3386
https://doi.org/10.1021/cg901497p
35 Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177–182
https://doi.org/10.1016/j.jcis.2004.02.012
36 Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirez J T, Yacaman M J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346–2353
https://doi.org/10.1088/0957-4484/16/10/059
37 Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956–960
https://doi.org/10.1016/j.electacta.2005.04.071
38 Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152(1-3): 22–27
https://doi.org/10.1016/j.mseb.2008.06.021
39 Gupta P, Bajpai M, Bajpai S. Investigation of antibacterial properties of silver nanoparticle-loaded poly(acrylamide-co-itaconic acid)-grafted cotton fabric. Journal of Cotton Science, 2008, 12(4): 280–286
40 Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5): 1531–1551
https://doi.org/10.1007/s11051-010-9900-y
41 Forbes G S, Cole H I. The solubility of silver chloride in dilute solutions and the existence of complex argentichloride ions. II. Journal of the American Chemical Society, 1921, 43(12): 2492–2497
https://doi.org/10.1021/ja01445a002
42 Somorjai G A, Park J Y. Molecular factors of catalytic selectivity. Angewandte Chemie International Edition, 2008, 47(48): 9212–9228
https://doi.org/10.1002/anie.200803181
43 Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146
https://doi.org/10.1021/ja904307n
[1] FCE-16011-of-WJ_suppl_1 Download
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[4] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[5] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[6] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[7] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[8] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
[9] Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals[J]. Front. Chem. Sci. Eng., 2019, 13(4): 718-726.
[10] Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang. Mass transport mechanisms within pervaporation membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 458-474.
[11] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[12] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[13] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[14] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[15] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed