Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 154-165    https://doi.org/10.1007/s11705-016-1593-z
RESEARCH ARTICLE
A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing
Yanlong Hou1, Wanni Xie1, Zhenya Duan2(), Jingtao Wang1()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
 Download: PDF(414 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new conceptual methodology is proposed to simultaneously integrate water allocation and energy networks with non-isothermal mixing. This method employs a simultaneous model and includes two design steps. In the first step, the water allocation network (WAN), which could achieve the targets of saving water and energy, is obtained by taking account the temperature factor into the design procedure. The optimized targets of both freshwater and energy are reached at this step which ensures this approach is a simultaneous one. In the second step, based on the obtained WAN, the whole water allocation and heat exchange network (WAHEN) is combined with the non-isothermal mixing to reduce the number of heat exchangers. The thus obtained WAHEN can achieve three optimization targets (minimization of water, energy and the number of heat exchangers). Furthermore, the effectivity of our method has been demonstrated by solving two literature examples.

Keywords simultaneous integration      non-isothermal mixing      multi-target optimization      water and energy networks     
Corresponding Author(s): Zhenya Duan,Jingtao Wang   
Just Accepted Date: 08 September 2016   Online First Date: 17 October 2016    Issue Date: 12 May 2017
 Cite this article:   
Yanlong Hou,Wanni Xie,Zhenya Duan, et al. A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing[J]. Front. Chem. Sci. Eng., 2017, 11(2): 154-165.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1593-z
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/154
Fig.1  The flowchart to design the water allocation networks
ProcessCin/ppmCout/ppmTop,in/out /°Ca)Mass load /(g?s?1)
10100402
2501001005
3508007530
4400800504
Tab.1  Data for example 1
Fig.2  Process coordinates for example 1
Fig.3  Concentration order and temperature composite curves for example 1
OrderStream allocationAmount /(kg?s?1)Freshwater /(kg?s?1)
Process 120
Process 250
Process 3(process 1, process 3)2020
Process 4(process 2, process 4)5.7
Tab.2  Stream allocation for example 1
Fig.4  Water allocation network for example 1
Fig.5  The first option of the heat network for example 1
Fig.6  The second option of the heat network for example 1
Fig.7  Overall water and energy network for example 1. The part in the dash-line box is IHEN shown in Fig. 6
LiteraturesFreshwater /(kg?s?1)Hot utility
/kW
Cold utility
/kW
Heat unitsa)
/unit
Heat duty /kW
Our method9037800422260
Ref. []904265485523585
Ref. []9037800422260
Ref. []9037800522680
Tab.3  Comparisons for example 1
ProcessCin /ppmCout /ppmTop,in/out /℃Mass load /(g?s?1)
1508007530
2501001005
3800110010050
Tab.4  Process data of example 2
Fig.8  Concentration order and temperature composite curves for example 2
Fig.9  Water allocation network for example 2
Fig.10  Overall water and energy network for example 2. The part in the dash-line box is IHEN
LiteraturesFreshwater /(kg?s?1)Hot utility /kWCold utility /kWHeat unitsa) /unitHeat duty /kW
Our method87.536750325462.5
Ref. []77.33736.2491727680.8
Ref. []87.236750425496.2
Tab.5  Comparisons for example 2
1 Chen Z Y, Wang J T. Heat, mass, and work exchange networks. Frontiers of Chemical Science Engineering, 2012, 6(4): 484–502
https://doi.org/10.1007/s11705-012-1221-5
2 Savelski M J, Bagejewicz M J. Design and retrofit of water utilization systems in refineries and process plants. AIChE Annual Meeting, Los Angeles, 1997
3 Ahmetović E, Ibrić N, Kravanja Z, Grossmann I E. Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers & Chemical Engineering, 2015, 82: 144–171
https://doi.org/10.1016/j.compchemeng.2015.06.011
4 Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design. Chemical Engineering Science, 1998, 53(14): 2595–2621
https://doi.org/10.1016/S0009-2509(98)00014-1
5 Bagajewicz M J, Rodera H, Savelski M. Energy efficient water utilization systems in process plants. Computers & Chemical Engineering, 2002, 26(1): 59–79
https://doi.org/10.1016/S0098-1354(01)00751-7
6 Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science, 2008, 63(14): 3664–3678
https://doi.org/10.1016/j.ces.2008.04.044
7 Liao Z W, Rong G, Wang J D, Yang Y R. Systematic optimization of heat-integrated water allocation networks. Industrial & Engineering Chemistry Research, 2011, 50(11): 6713–6727
https://doi.org/10.1021/ie1016392
8 Chen Z Y, Hou Y L, Li X D, Wang J T. Simultaneous optimization of water and heat exchange networks. Korean Journal of Chemical Engineering, 2014, 31(4): 558–567
https://doi.org/10.1007/s11814-013-0236-z
9 Bogataj M, Bagajewicz M J. Design of non-isothermal process water networks. 17th European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering, 2007, 24: 377–382
10 Bogataj M, Bagajewicz M J. Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers & Chemical Engineering, 2008, 32(12): 3130–3142
https://doi.org/10.1016/j.compchemeng.2008.05.006
11 Boix M, Pibouleau L, Montastruc L, Azzaro-Pantel C, Domenech S. Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering, 2012, 36: 442–455
https://doi.org/10.1016/j.applthermaleng.2011.10.062
12 Manan Z A, Tea S Y, Wan S R. A new technique for simultaneous water and energy minimization in process plant. Chemical Engineering Research & Design, 2009, 87(11): 1509–1519
https://doi.org/10.1016/j.cherd.2009.04.013
13 George J, Sahu G C, Bandyopadhyay S. Heat integration in process water networks. Industrial & Engineering Chemistry Research, 2011, 50(7): 3695–3704
https://doi.org/10.1021/ie101098a
14 Thongpreecha S, Siemanond K. Water and heat exchanger network design for fixed-flowrate system. Chemical Engineering Transactions, 2014, 39: 193–198
15 Huang Y L, Edgar T F. Knowledge based design approach for the simultaneous minimization of waste generation and energy consumption in a petroleum refinery. In: Rossiter A P, ed. Waste Minimization Through Process Design. New York: McGraw-Hill Companies, 1995, 181–196
16 Savulescu L, Smith R. Simultaneous energy and water minimisation. AIChE Annual Meeting, Miami Beach, Florida, 1998
17 Savulescu L E, Kim J, Smith R. Studies on simultaneous energy and water minimisation – Part I: Systems with no water re-use. Chemical Engineering Science, 2005, 60(12): 3279–3290
https://doi.org/10.1016/j.ces.2004.12.037
18 Savulescu L E, Kim J K, Smith R. Studies on simultaneous energy and water minimization – Part II: Systems with maximum re-use of water. Chemical Engineering Science, 2005, 60(12): 3291–3308
https://doi.org/10.1016/j.ces.2004.12.036
19 Wan Alwi S R, Ismail A, Manan Z A, Handani Z B. A new graphical approach for simultaneous mass and energy minimization. Applied Thermal Engineering, 2011, 31(6-7): 1021–1030
https://doi.org/10.1016/j.applthermaleng.2010.11.026
20 Leewongtanawit B, Kim J K. Improving energy recovery for water minimisation. Energy, 2009, 34(7): 880–893
https://doi.org/10.1016/j.energy.2009.03.004
21 Martínez-Patiño J, Picón-Núñez M, Serra L M, VerdaV.Systematic approach for the synthesis of water and energy networks. Applied Thermal Engineering, 2012, 48: 458–464
https://doi.org/10.1016/j.applthermaleng.2011.12.030
22 Hou Y L, Wang J T, Chen Z Y, Li X D, Zhang J L. Simultaneous integration of water and energy on conceptual methodology for both single- and multi-contaminant problems. Chemical Engineering Science, 2014, 117: 436–444
https://doi.org/10.1016/j.ces.2014.07.004
23 Liu Z Y, Yang Y, Wan L Z, Wang X, Hou K H. A heuristic design procedure for water-using networks with multiple contaminants. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(2): 374–382
https://doi.org/10.1002/aic.11693
24 Zheng X S, Feng X, Cao D L. Design water allocation network with minimum freshwater and energy consumption. Process System Engineering, 2003, 388–393
25 Feng X, Li Y C, Shen R J. A new approach to design energy efficient water allocation networks. Applied Thermal Engineering, 2009, 29(11-12): 2302–2307
https://doi.org/10.1016/j.applthermaleng.2008.11.007
26 Wang Y P, Smith R. Waste-water minimisation. Chemical Engineering Science, 1994, 49(7): 981–1006
https://doi.org/10.1016/0009-2509(94)80006-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed