Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 534-541    https://doi.org/10.1007/s11705-016-1596-9
RESEARCH ARTICLE
Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol
Yinlong Hu,Shuang Zheng,Fumin Zhang()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterogeneous catalysts with convenient recyclability and reusability are vitally important to reduce the cost of catalysts as well as to avoid complex separation and recovery operations. In this regard, magnetic MIL-100(Fe)@SiO2@Fe3O4 microspheres with a novel core-shell structure were fabricated by the in-situ self-assembly of a metal-organic MIL-100(Fe) framework around pre-synthesized magnetic SiO2@Fe3O4 particles under relatively mild and environmentally benign conditions. The catalytic activity of the MIL-100(Fe)@SiO2@Fe3O4 catalyst was tested for the liquid-phase acetalization of benzaldehyde and glycol. The MIL-100(Fe)@SiO2@Fe3O4 catalyst has a significant amount of accessible Lewis acid sites and therefore exhibited good acetalization catalytic activity. Moreover, due to its superparamagnetism properties, the heterogeneous MIL-100(Fe)@SiO2@Fe3O4 catalyst can be easily isolated from the reaction system within a few seconds by simply using an external magnet. The catalyst could then be reused at least eight times without significant loss in catalytic efficiency.

Keywords metal-organic frameworks      heterogeneous catalysis      magnetically recoverable catalysts      core-shell structure      acetalization     
Corresponding Author(s): Fumin Zhang   
Online First Date: 09 November 2016    Issue Date: 29 November 2016
 Cite this article:   
Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1596-9
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/534
Fig.1  Scheme 1Schematic illustration of the preparation of MIL-100(Fe)@SiO2@Fe3O4 microsphere. TEOS: tetraethoxysilane; APTES: 3-aminopropyltriethoxysilane; H3BTC: 1,3,5-benzenetricarboxylic acid
Fig.2  SEM images of (A) Fe3O4, (B) SiO2@Fe3O4 and TEM images of (C) Fe3O4, (D) SiO2@Fe3O4 and (E) MIL-100(Fe)@SiO2@Fe3O4
Fig.3  XRD patterns of simulated Fe3O4 obtained from crystal structure data, simulated MIl-100(Fe) obtained from crystal structure data, Fe3O4, SiO2@Fe3O4 and MIL-100(Fe)@SiO2@Fe3O4
Fig.4  (A) N2 adsorption isotherms at ?196 °C and (B) pore size distributions based on the density functional theory of MIL-100(Fe) and MIL-100(Fe)@SiO2@Fe3O4
Catalyst SBETa /(m2·g-1) Vmicrob /(cm3·g-1) Vmeso /(cm3·g-1) Acid amount /(mmol·g-1)
MIL-100(Fe) 1836 0.34 0.82 1.92c
MIL-100(Fe)@SiO2@Fe3O4 340.7 0.08 0.22 0.45c
USY 595 0.24 0.072 0.95d
H-Beta 518 0.20 0.059 1.17d
SiO2@Fe3O4 2.6 0 0 0.01d
Amberlyst-15 38 0 0.18 4.7e
MIL-100(Fe)@SiO2@Fe3O4 329.7 0.07 0.21 0.41c
Tab.1  Physicochemical properties of various catalysts
Fig.5  FTIR spectra of Fe3O4, SiO2@Fe3O4, MIL-100(Fe) and MIL-100(Fe)@SiO2@Fe3O4
Fig.6  The magnetic hysteresis loops of Fe3O4 and the MIL-100(Fe)@SiO2@Fe3O4 core-shell magnetic catalyst. The photograph in the inset shows the convenient separation process of the catalyst by a magnet
Fig.7  Acetalization of benzaldehyde and glycol in the presence of MIL-100(Fe)@SiO2@Fe3O4 and SiO2@Fe3O4 as a function of reaction time. Reaction conditions: 0.06 g of catalyst, 35 mmol of benzaldehyde, 64 mmol of glycol and 10 mL of cyclohexane used as the water removal agent at 80 °C
Fig.8  Activity comparison of different catalysts in the acetalization of benzaldehyde with glycol. (a) blank; (b) MIL-100(Fe)@SiO2@Fe3O4; (c) MIL-100(Fe); (d) USY; (e) H-Beta; (f) Amberlyst-15. Reaction conditions: 0.06 g of catalyst, 35 mmol of benzaldehyde, 64 mmol of glycol and 10 mL of cyclohexane used as the water removal agent at 80 °C for 120 min
Fig.9  Reusability of (A) MIL-100(Fe)@SiO2@Fe3O4 and (B) Amberlyst-15 in the catalytic acetalization of aldehyde with glycol. Reaction conditions: 0.06 g of catalyst, 35 mmol of benzaldehyde, 64 mmol of glycol and 10 mL of cyclohexane used as the water removal agent at 80 °C for 120 min. (a) recovered catalyst with no fresh catalyst added and (b) fresh catalyst added to maintain a constant amount (0.06 g) of catalyst
1 Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chemical Reviews, 2004, 104(1): 199–250
https://doi.org/10.1021/cr0200769
2 Miao J, Wan H, Shao Y, Guan G, Xu B. Acetalization of carbonyl compounds catalyzed by acidic ionic liquid immobilized on silica gel. Journal of Molecular Catalysis A Chemical, 2011, 348(1-2): 77–82
https://doi.org/10.1016/j.molcata.2011.08.005
3 Wang Y, Gong X, Wang Z, Dai L. SO3H-functionalized ionic liquids as efficient and recyclable catalysts for the synthesis of pentaerythritol diacetals and diketals. Journal of Molecular Catalysis A: Chemical, 2010, 322(1-2): 7–16
4 Iwamoto M, Tanaka Y, Sawamura N, Namba S. Remarkable effect of pore size on the catalytic activity of mesoporous silica for the acetalization of cyclohexanone with methanol. Journal of the American Chemical Society, 2003, 125(43): 13032–13033
https://doi.org/10.1021/ja0375129
5 Climent M J, Corma A, Iborra S, Navarro M C, Primo J. Use of mesoporous MCM-41 aluminosilicates as catalysts in the production of fine chemicals: Preparation of dimethylacetals. Journal of Catalysis, 1996, 161(2): 783–789
https://doi.org/10.1006/jcat.1996.0241
6 Parangi T F, Wani B N, Chudasama U V. Acetalization of carbonyl compounds with pentaerythritol catalyzed by metal(iv) phosphates as solid acid catalysts. Industrial & Engineering Chemistry Research, 2013, 52(26): 8969–8977
https://doi.org/10.1021/ie400686d
7 Dhakshinamoorthy A, Alvaro M, Garcia H. Metal organic frameworks as solid acid catalysts for acetalization of aldehydes with methanol. Advanced Synthesis & Catalysis, 2010, 352(17): 3022–3030
https://doi.org/10.1002/adsc.201000537
8 Jin Y, Shi J, Zhang F, Zhong Y, Zhu W. Synthesis of sulfonic acid-functionalized MIL-101 for acetalization of aldehydes with diols. Journal of Molecular Catalysis A Chemical, 2014, 383-384: 167–171
https://doi.org/10.1016/j.molcata.2013.12.005
9 Corma A, García H, Llabrés i Xamena F X. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 2010, 110(8): 4606–4655
https://doi.org/10.1021/cr9003924 pmid: 20359232
10 Gascon J, Corma A, Kapteijn F, Llabrés i Xamena F X. Metal organic framework catalysis: Quo vadis? ACS Catalysis, 2014, 4(2): 361–378
https://doi.org/10.1021/cs400959k
11 Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2015: 1–5
12 Dhakshinamoorthy A, Asiri A M, Garcia H. Catalysis by metal-organic frameworks in water. Chemical Communications, 2014, 50(85): 12800–12814
https://doi.org/10.1039/C4CC04387A pmid: 25056246
13 Horcajada P, Surblé S, Serre C, Hong D Y, Seo Y K, Chang J S, Grenèche J M, Margiolaki I, Férey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications, 2007, 27(27): 2820–2822
https://doi.org/10.1039/B704325B pmid: 17609787
14 Yoon J W, Seo Y K, Hwang Y K, Chang J S, Leclerc H, Wuttke S, Bazin P, Vimont A, Daturi M, Bloch E, Llewellyn P L, Serre C, Horcajada P, Grenèche J M, Rodrigues A E, Férey G. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angewandte Chemie International Edition, 2010, 49(34): 5949–5952
https://doi.org/10.1002/anie.201001230
15 Dhakshinamoorthy A, Alvaro M, Chevreau H, Horcajada P, Devic T, Serre C, Garcia H. Iron(iii) metal-organic frameworks as solid Lewis acids for the isomerization of a-pinene oxide. Catalysis Science & Technology, 2012, 2(2): 324–330
https://doi.org/10.1039/C2CY00376G
16 Zhang F, Jin Y, Shi J, Zhong Y, Zhu W, El-Shall M S. Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chemical Engineering Journal, 2015, 269: 236–244
https://doi.org/10.1016/j.cej.2015.01.092
17 Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chemical Engineering Journal, 2015, 259: 183–190
https://doi.org/10.1016/j.cej.2014.07.119
18 Lukosi M, Zhu H, Dai S. Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis. Frontiers of Chemical Science and Engineering, 2016, 10(1): 39–56
https://doi.org/10.1007/s11705-015-1551-1
19 Govan J, Gun’ko Y K. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials (Basel, Switzerland), 2014, 4(2): 222–241
https://doi.org/10.3390/nano4020222
20 Zhang T, Zhang X, Yan X, Kong L, Zhang G, Liu H, Qiu J, Yeung K L. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chemical Engineering Journal, 2013, 228: 398–404
https://doi.org/10.1016/j.cej.2013.05.020
21 Zhang H J, Qi S D, Niu X Y, Hu J, Ren C L, Chen H L, Chen X G. Metallic nanoparticles immobilized in magnetic metal-organic frameworks: Preparation and application as highly active, magnetically isolable and reusable catalysts. Catalysis Science & Technology, 2014, 4(9): 3013–3024
https://doi.org/10.1039/C4CY00072B
22 Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 2008, 130(1): 28–29
https://doi.org/10.1021/ja0777584
23 Ding H L, Zhang Y X, Wang S, Xu J M, Xu S C, Li G H. Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses. Chemistry of Materials, 2012, 24(23): 4572–4580
https://doi.org/10.1021/cm302828d
24 Zhang C F, Qiu L G, Ke F, Zhu Y J, Yuan Y P, Xu G S, Jiang X. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(45): 14329–14334
https://doi.org/10.1039/c3ta13030d
25 Yu S, Wan J, Chen K. A facile synthesis of superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructures: Preparation, characterization and biocompatibility. Journal of Colloid and Interface Science, 2016, 461: 173–178
https://doi.org/10.1016/j.jcis.2015.09.015
26 Ke F, Qiu L G, Zhu J. Fe₃O₄@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction. Nanoscale, 2014, 6(3): 1596–1601
https://doi.org/10.1039/C3NR05051C
[1] FCE-16022-of-HY_suppl_1 Download
[1] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[2] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed