Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 441-458    https://doi.org/10.1007/s11705-016-1598-7
REVIEW ARTICLE
Where physics meets chemistry: Thin film deposition from reactive plasmas
Andrew Michelmore1,2,*(),Jason D. Whittle1,James W. Bradley3,Robert D. Short2,4,*()
1. School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095
2. Future Industries Institute, University of South Australia, Mawson Lakes, Australia, SA 5095
3. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
4. Material Science Institute, Lancaster University, Lancaster, LA1 4YW, UK
 Download: PDF(358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Functionalising surfaces using polymeric thin films is an industrially important field. One technique for achieving nanoscale, controlled surface functionalization is plasma deposition. Plasma deposition has advantages over other surface engineering processes, including that it is solvent free, substrate and geometry independent, and the surface properties of the film can be designed by judicious choice of precursor and plasma conditions. Despite the utility of this method, the mechanisms of plasma polymer growth are generally unknown, and are usually described by chemical (i.e., radical) pathways. In this review, we aim to show that plasma physics drives the chemistry of the plasma phase, and surface-plasma interactions. For example, we show that ionic species can react in the plasma to form larger ions, and also arrive at surfaces with energies greater than 1000 kJ?mol1 (>10 eV) and thus facilitate surface reactions that have not been taken into account previously. Thus, improving thin film deposition processes requires an understanding of both physical and chemical processes in plasma.

Keywords thin films      plasma physics      plasma chemistry      functionalization      polymer     
PACS:     
Fund: 
Corresponding Author(s): Andrew Michelmore,Robert D. Short   
Issue Date: 29 November 2016
 Cite this article:   
Andrew Michelmore,Jason D. Whittle,James W. Bradley, et al. Where physics meets chemistry: Thin film deposition from reactive plasmas[J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1598-7
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/441
Fig.1  (a) A schematic of an RF plasma polymerisation reactor, and (b) a simplified electrical model showing the sheath regions and the bulk plasma. Adapted with permission from ref. [7]
Fig.2  Maxwellian electron energy distribution function with average electron temperature of 3 eV, and the types of collisions that each energy can cause
Pa mbar mTorr
1 1 × 102 7.5
Tab.1  Units typically used in measuring plasma pressure and conversions
Fig.3  Plasma phase mass spectra of propionic acid at 1 Pa and 2 W (a) neutral phase and (b) positive ions. Reproduced from ref. [15] with permission from The Royal Society of Chemistry
Fig.4  The net flux of charged particles through an imaginary plane (left) is zero, while the net flux to a solid surface is not due to the higher mobility of electrons (right). Reproduced from ref. [42] with permission from The Royal Society of Chemistry
Fig.5  A schematic of the sheath and pre-sheath regions showing electrons being repelled from the wall which has acquired a negative potential. Reproduced from ref. [42] with permission from The Royal Society of Chemistry
Pressure /mbar Ion flux /(1018 ions?m2?s1)
0.005 0.122
0.008 0.114
0.01 0.110
0.05 0.438
0.06 0.525
0.26 1.605
Tab.2  Ion flux to surfaces from 15 W ethanol plasma as a function of pressure. Reproduced with permission from ref. [25]
Fig.6  Ion energy of ethanol plasma as a function of pressure at constant power of 15W. Reproduced with permission from ref [25]
Fig.7  Retention of carboxylic acid groups in acrylic acid plasma polymers, showing high retention of the carboxylic acid peak at 289 eV when the plasma power is kept low. Reproduced from ref [42] with permission from The Royal Society of Chemistry
59 O’Toole L, Short R D, Ameen A P, Jones F R. Mass spectrometry of and deposition-rate measurements from radiofrequency-induced plasmas of methyl isobutyrate, methyl methacrylate and n-butyl methacrylate. Journal of the Chemical Society, Faraday Transactions, 1995, 91(9): 1363–1370
https://doi.org/10.1039/ft9959101363
60 Bohm D. Minimum ionic kinetic energy for a stable sheath. In: Guthrie A,Wakerling R K, eds. The Characteristics of Electrical Discharges in Magnetic Fields. London: McGrawHill, 1949, 77–86
61 Vender D, Boswell R W. Numerical modeling of low-pressure RF plasma. IEEE Transactions on Plasma Science, 1990, 18(4): 725–732
https://doi.org/10.1109/27.57527
62 Jacobs D C. Reactive collisions of hyperthermal energy molecular ions with solid surfaces. Annual Review of Physical Chemistry, 2002, 53(1): 379–407
https://doi.org/10.1146/annurev.physchem.53.100301.131622
63 Titus M J, Nest D, Graves D B. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist. Applied Physics Letters, 2009, 94(17): 171501
https://doi.org/10.1063/1.3125260
64 Truica-Marasescu F, Wertheimer M R. Vacuum-ultraviolet photopolymerisation of amine-rich thin films. Macromolecular Chemistry and Physics, 2008, 209(10): 1043–1049
https://doi.org/10.1002/macp.200800089
1 Chatelier R C, Dai L, Griesser H J, Li S, Zientek P, Lohmann D, Chabrecek P U S. Patent, 6623747, <Date>2003-09-23</Date>
2 Moustafa M, Simpson C, Glover M, Dawson R A, Tesfaye S, Creagh F M, Haddow D, Short R, Heller S, MacNeil S. A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabetic Medicine, 2004, 21(7): 786–789
https://doi.org/10.1111/j.1464-5491.2004.01166.x
3 Yasuda H. Plasma Polymerization. New York: Academic Press, 1985
4 Kettle A, Beck A J, O’Toole L, Jones F, Short R. Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimised composites. Composites Science and Technology, 1997, 57(8): 1023–1032
https://doi.org/10.1016/S0266-3538(96)00162-5
5 Lopattananon N, Kettle A, Tripathi D, Beck A J, Duval E, France R M, Short R D, Jones F R. Interface molecular engineering of carbon-fibercomposites. Composites. Part A, Applied Science and Manufacturing, 1999, 30(1): 49–57
https://doi.org/10.1016/S1359-835X(98)00109-2
6 Beck A J, Jones F R, Short R D. Plasma copolymerization as a route to the fabrication of new surfaces with controlled amounts of specific chemical functionality. Polymer, 1996, 37(24): 5537–5539
https://doi.org/10.1016/S0032-3861(96)00479-X
7 Michelmore A, Whittle J D, Short R D, Boswell R W, Charles C. An Experimental and analytical study of an asymmetric capacitively coupled plasma used for plasma polymerization. Plasma Processes and Polymers, 2014, 11(9): 833–841
https://doi.org/10.1002/ppap.201400026
8 Suzuki K, Nakamura K, Ohkubo H, Sugai H. Power transfer efficiency and mode jump in an inductive RF discharge. Plasma Sources Science & Technology, 1998, 7(1): 13–20
https://doi.org/10.1088/0963-0252/7/1/003
9 Ward R J. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Dissertation for the Doctoral Degree. UK: University of Durham, 1989
10 Beyer D, Knoll W, Ringsdorf H, Wang J H, Timmons R B, Sluka P. Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. Journal of Biomedical Materials Research. Part A, 1997, 36(2): 181–189
https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<181::AID-JBM6>3.0.CO;2-G
11 Padron-Wells G, Estrada-Raygoza I C, Thamban P L S, Nelson C T, Chung C W, Overzet L J, Goeckner M J. Understanding the synthesis of ethylene glycol pulsed plasma discharges. Plasma Processes and Polymers, 2013, 10(2): 119–135
https://doi.org/10.1002/ppap.201200066
12 Chen R T, Muir B W, Thomsen L, Tadich A, Cowie B C C, Such G K, Postma A, McLean K M, Caruso F. New insights into the substrate plasma polymer interface. Journal of Physical Chemistry B, 2011, 115(20): 6495–6502
https://doi.org/10.1021/jp200864k
13 Daw R, O’Leary T, Kelly J, Short R D, Cambray-Deakin M, Devlin A J, Brook I M, Scutt A, Kothari S. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Plasmas and Polymers, 1999, 4(2-3): 113–132
https://doi.org/10.1023/A:1021844824801
14 Daw R, Candan S, Beck A, Devlin A, Brook I, MacNeil S, Dawson D A, Short R D. Plasma copolymer surfaces of acrylic acid/1,7-octadiene: Surface characterisation and the attachment of ROS 17/2.8-osteoblast-like cells. Biomaterials, 1998, 19(19): 1717–1725
https://doi.org/10.1016/S0142-9612(98)00080-5
15 Michelmore A, Steele D A, Robinson D E, Whittle J D, Short R D. The link between mechanisms of deposition and the physico-chemical properties of plasma polymer films. Soft Matter, 2013, 9(26): 6167–6175
https://doi.org/10.1039/c3sm51039e
16 Whittle J D, Short R D, Douglas C, Davies J. Differences in the aging of allyl alcohol, acrylic acid, allylamine, and octa-1,7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chemistry of Materials, 2000, 12(9): 2664–2671
https://doi.org/10.1021/cm0002158
17 Gengenbach T R, Chatelier R C, Griesser H J. Characterization of the ageing of plasma-deposited polymer films: Global analysis of x-ray photoelectron spectroscopy data. Surface and Interface Analysis, 1996, 24(4): 271–281
https://doi.org/10.1002/(SICI)1096-9918(199604)24:4<271::AID-SIA116>3.0.CO;2-J
18 Haddow D B, Steele D, Short R D, Dawson R A, Macneil S. Plasma–polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound–bed model. Journal of Biomedical Materials Research. Part A, 2003, 64A(1): 80–87
https://doi.org/10.1002/jbm.a.10356
19 Padron-Wells G, Jarvis B C, Jindal A K, Goeckner M J. Understanding the synthesis of DEGVE pulsed plasmas for application to ultra thin biocompatible interfaces. Colloids and Surfaces. B, Biointerfaces, 2009, 68(2): 163–170
https://doi.org/10.1016/j.colsurfb.2008.09.028
20 Michelmore A, Bryant P M, Steele D A, Vasilev K, Bradley J W, Short R D. Role of positive ions in determining the deposition rate and film chemistry of continuous wave hexamethyldisiloxane plasmas. Langmuir, 2011, 27(19): 11943–11950
https://doi.org/10.1021/la202010n
21 Michelmore A, Gross-Kosche P, Al-Bataineh S A, Whittle J D, Short R D. On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers. Langmuir, 2013, 29(8): 2595–2601
https://doi.org/10.1021/la304713b
22 Choukourov A, Biederman H, Slavinska D, Hanley L, Grinevich A, Boldryeva H, Mackova A. Mechanistic studies of plasma polymerization of allylamine. Journal of Physical Chemistry B, 2005, 109(48): 23086–23091
https://doi.org/10.1021/jp0535691
23 Michelmore A, Charles C, Boswell R W, Short R D, Whittle J D. Defining plasma polymerization: New insight into what we should be measuring. ACS Applied Materials & Interfaces, 2013, 5(12): 5387–5391
https://doi.org/10.1021/am401484b
24 Daunton C, Smith L E, Whittle J D, Short R D, Steele D A, Michelmore A. Plasma parameter aspects in the fabrication of stable amine functionalized plasma polymer films. Plasma Processes and Polymers, 2015, 12(8): 817–826
https://doi.org/10.1002/ppap.201400215
25 Saboohi S, Jasieniak M, Coad B R, Griesser H J, Short R D, Michelmore A. Comparison of plasma polymerization under collisional and collision-less pressure regimes. Journal of Physical Chemistry B, 2015, 119(49): 15359–15369
https://doi.org/10.1021/acs.jpcb.5b07309
26 Zhang Z H, Liu S L, Shi Y, Dou J, Fang S M. DNA detection and cell adhesion on plasma-polymerized pyrrole. Biopolymers, 2014, 101(5): 496–503
https://doi.org/10.1002/bip.22408
27 Wang L, Liu X J, Hao J, Chu L Q. Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sensors and Actuators. B, Chemical, 2015, 215: 368–372
https://doi.org/10.1016/j.snb.2015.04.005
28 Jiang Z, Jiang Z J. Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. Journal of Membrane Science, 2014, 456: 85–106
https://doi.org/10.1016/j.memsci.2014.01.004
29 Hua J, Zhanga C, Jiangb L, Fanga S, Zhanga X, Wanga X, Menga Y. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane. Journal of Power Sources, 2014, 248: 831–838
https://doi.org/10.1016/j.jpowsour.2013.09.099
30 Zhao X Y, Wang M Z, Ji J Q, Wang T H, Yang F, Du J M. Structural analysis and dielectric property of novel conjugated polycyanurates. Polymer Engineering and Science, 2014, 54(4): 812–817
https://doi.org/10.1002/pen.23628
31 Li P H, Li L M, Wang W H, Jin W H, Liu X M, Yeung K W K, Chu P K. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Applied Surface Science, 2014, 297: 109–115
https://doi.org/10.1016/j.apsusc.2014.01.092
32 Feng Y E, Liao X P, Wang Y N, Shi B. Improvement in leather surface hydrophobicity through low-pressure cold plasma polymerization. Journal of the American Leather Chemistry Association, 2014, 109(3): 89–95
33 Yang Z L, Xiong K Q, Qi P K, Yang Y, Tu Q F, Wang J, Huang N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS Applied Materials & Interfaces, 2014, 6(4): 2647–2656
https://doi.org/10.1021/am405124z
34 Li J W, Wu Z X, Huang C J, Liu H M, Huang R J, Li L F. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 2014, 90: 166–173
https://doi.org/10.1016/j.compscitech.2013.11.009
35 Sun Y Y, Liang Q, Chi H J, Zhang Y J, Shi Y, Fang D N, Li F X. The Application of gas plasma technologies in surface modification of aramid fiber. Fibers and Polymers, 2014, 15(1): 1–7
https://doi.org/10.1007/s12221-014-0001-x
36 Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114
https://doi.org/10.1016/j.desal.2015.05.002
37 Ma G Q, Liu Y, Wei S, Sheng J. Surface modification of polypropylene by ethylene plasma and its induced β-form in polypropylene. Chinese Journal of Polymer Science, 2015, 33(5): 669–673
https://doi.org/10.1007/s10118-015-1631-1
38 Wan S J, Wang L, Xu X J, Zhao C H, Liu X D. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter, 2014, 10(6): 903–910
https://doi.org/10.1039/C3SM52434E
39 Zhang Z G, Zhang T Z, Li J S, Ji Z L, Zhou H M, Zhou X F, Gu N. Preparation of poly(<?A3B2 th=8pt?>L<?A3B2 th?>-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. Journal of Biomedical Materials Research Part B, 2014, 102(1): 12–21
https://doi.org/10.1002/jbm.b.32947
40 Denaro A R, Owens P A, Crawshaw A. Glow discharge polymerization—styrene. European Polymer Journal, 1968, 4(1): 93–106
https://doi.org/10.1016/0014-3057(68)90010-4
41 Westwood A R. Glow discharge polymerization—rates and mechanisms of polymer formation. European Polymer Journal, 1971, 7(4): 363–375
https://doi.org/10.1016/0014-3057(71)90007-3
42 Michelmore A, Steele D A, Whittle J D, Bradley J W, Short R D. Nanoscale deposition of chemically functionalised films via plasma polymerisation. RSC Advances, 2013, 3(33): 13540–13557
https://doi.org/10.1039/c3ra41563e
43 Chabert P, Braithwaite N. Physics of Radio-Frequency Plasmas.Cambridge: Academic Press, 2011
44 Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing.Chichester: John Wiley and Sons, 1994
45 Hulburt E O. Atmospheric ionization by cosmic radiation. Physical Review, 1931, 37(1): 1–8
https://doi.org/10.1103/PhysRev.37.1
46 Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Accounts of Chemical Research, 2003, 36(4): 255–263
https://doi.org/10.1021/ar020230d
47 Johnston E E, Beyers J D, Ratner B D. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir, 2005, 21(3): 870–881
https://doi.org/10.1021/la036274s
48 Menzies D J, Cowie B, Fong C, Forsythe J S, Gengenbach T R, McLean K M, Puskar L, Textor M, Thomsen L, Tobin M, Muir B W. One-step method for generating PEG-Like plasma polymer gradients: Chemical characterization and analysis of protein interactions. Langmuir, 2010, 26(17): 13987–13994
https://doi.org/10.1021/la102033d
49 Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953
50 Agarwal S, Quax G W W, van de Senden M C M, Maroudas D, Aydil E S. Measurement of absolute radical densities in a plasma using modulated-beam line-of-sight threshold ionization mass spectrometry. Journal of Vacuum Science and Technology Part A, 2004, 22(1): 71–81
https://doi.org/10.1116/1.1627767
51 Booth J P, Corr C S, Curley G A, Jolly J, Guillon J, Földes T. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Applied Physics Letters, 2006, 88(15): 151502
https://doi.org/10.1063/1.2194823
52 Whittle J D, Short R D, Steele D A, Bradley J W, Bryant P M, Jan F, Biederman H, Serov A A, Choukurov A, Hook A L, Ciridon W A, Ceccone G, Hegemann D, Korner E, Michelmore A. Variability in plasma polymerization processes—an international round-robin study. Plasma Processes and Polymers, 2013, 10(9): 767–778
https://doi.org/10.1002/ppap.201300029
53 Williams T, Hayes M W. Polymerization in a glow discharge. Nature, 1966, 209(5025): 769–773
https://doi.org/10.1038/209769a0
54 Chapman B. Glow Discharge Processes.Chichester: John Wiley and Sons, 1980
55 Doyle J R. Chemical kinetics in low pressure acetylene radio frequency glow discharges. Journal of Applied Physics, 1997, 82(10): 4763–4771
https://doi.org/10.1063/1.366333
56 O’Toole L, Mayhew C A, Short R D. On the plasma polymerisation of allyl alcohol: An investigation of ion-molecule reactions using a selected ion flow tube. Journal of the Chemical Society, Faraday Transactions, 1997, 93(10): 1961–1964
https://doi.org/10.1039/a608412e
57 Stoykov S, Eggs C, Kortshagen U. Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge. Journal of Physics. D, Applied Physics, 2001, 34(14): 2160–2173
https://doi.org/10.1088/0022-3727/34/14/312
58 Oh J S, Bradley J W. Heavy ion formation in plasma jet polymerization of heptylamine at atmospheric pressure. Plasma Processes and Polymers, 2013, 10(10): 839–842
65 Barton D, Bradley J W, Gibson K J, Steele D A, Short R D. An in situ comparison between VUV photon and ion energy fluxes to polymer surfaces immersed in an RF plasma. Journal of Physical Chemistry B, 2000, 104(30): 7150–7153
https://doi.org/10.1021/jp000618v
66 Haller I, White P. Polymerization of butadiene gas on surfaces under low energy electron bombardment. Journal of Physical Chemistry, 1963, 67(9): 1784–1788
https://doi.org/10.1021/j100803a010
67 Peter S, Graupner K, Grambole D, Richter F. Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors. Journal of Applied Physics, 2007, 102(5): 053304
https://doi.org/10.1063/1.2777643
68 Shen M, Bell A T. A review of recent advances in plasma polymerization. In: Plasma Polymerization. ACS Symposium Series. Washington, DC: American Chemical Society, 1979, 1–33
69 Friedrich J. Plasma processes and polymers, mechanisms of plasma polymerization—reviewed from a chemical point of view. Plasma Processes and Polymers, 2011, 8(9): 783–802
https://doi.org/10.1002/ppap.201100038
70 Milella A, Palumbo F, Favia P, Cicala G, d’Agostino R. Continuous and modulated deposition of fluorocarbon films from c-C4F8 plasmas. Plasma Processes and Polymers, 2004, 1(2): 164–170
https://doi.org/10.1002/ppap.200400021
71 Hegemann D, Hanselmann B, Blanchard N, Amberg M. Plasma-substrate interaction during plasma deposition on polymers. Contributions to Plasma Physics, 2014, 54(2): 162–169
https://doi.org/10.1002/ctpp.201310064
72 Thiry D, Konstantinidis S, Cornil J, Snyders R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films, 2016, 606: 19–44
https://doi.org/10.1016/j.tsf.2016.02.058
73 Ershov S, Khelifa F, Lemaur V, Cornil J, Cossement D, Habibi Y, Dubois P, Snyders R. Free radical generation and concentration in a plasma polymer: The effect of aromaticity. ACS Applied Materials & Interfaces, 2014, 6(15): 12395–12405
https://doi.org/10.1021/am502255p
74 VonKeudell A, Schwartz-Selinger T, Meier M, Jacob W. Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Applied Physics Letters, 2000, 76(6): 676–678
https://doi.org/10.1063/1.125858
75 McNaught A D, Wilkinson A. IUPAC Compendium of Chemical Terminology, 2nd ed.Oxford: Blackwell Scientific Publications, 1997
76 O’Toole L, Beck A J, Ameen A P, Jones F R, Short R D. Radiofrequency-induced plasma polymerisation of propenoic acid and propanoic acid. Journal of the Chemical Society, Faraday Transactions, 1995, 91(21): 3907–3912
https://doi.org/10.1039/ft9959103907
77 Brookes P N, Fraser S, Short R D, Hanley L, Fuoco E, Roberts A, Hutton S J. The effect of ion energy on the chemistry of air-aged polymer films grown from the hyperthermal polyatomic ion Si2OMe+5. Electron Spectroscopy and Related Phenomena, 2001, 121(1-3): 281–297
https://doi.org/10.1016/S0368-2048(01)00340-1
78 Beck A J, Candan S, Short R D, Goodyear A, Braithwaite N, St J. The role of ions in the plasma polymerization of allylamine. Journal of Physical Chemistry B, 2001, 105(24): 5730–5736
https://doi.org/10.1021/jp0043468
79 Michelmore A, Whittle J D, Short R D. The importance of ions in low pressure PECVD plasmas. Frontiers in Physics, 2015, 3: 3
https://doi.org/10.3389/fphy.2015.00003
80 von Keudell A. Surface processes during thin-film growth. Plasma Sources Science & Technology, 2000, 9(4): 455–467
https://doi.org/10.1088/0963-0252/9/4/302
81 Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-radical-induced grafting from plasma polymer surfaces. Chemical Reviews, 2016, 116(6): 3975–4005
https://doi.org/10.1021/acs.chemrev.5b00634
82 Coad B R, Styan K E, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS Applied Materials & Interfaces, 2014, 6(10): 7782–7789
https://doi.org/10.1021/am501052d
83 Blanchard N E, Hanselmann B, Drosten J, Heunberger M, Hegemann D. Densification and hydration of HMDSO plasma polymers. Plasma Processes and Polymers, 2015, 12(1): 32–41
https://doi.org/10.1002/ppap.201400118
84 Ryssy J, Prioste-Amaral E, Assuncao D F N, Rogers N, Kirby G T S, Smith L E, Michelmore A. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(6): 4496–4504
https://doi.org/10.1039/C5CP05850C
85 Hopp I, Michelmore A, Smith L E, Robinson D E, Bachhuka A, Mierczynska A, Vasilev K. The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials, 2013, 34(21): 5070–5077
https://doi.org/10.1016/j.biomaterials.2013.03.075
86 Memming R, Tolle H J, Wierenga P E. Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-activated chemical vapour deposition process II: Tribological and mechanical properties. Thin Solid Films, 1986, 143(1): 31–41
https://doi.org/10.1016/0040-6090(86)90144-6
87 Pappas D L, Hopwood J. Deposition of diamondlike carbon using a planar radio frequency induction plasma. Journal of Vacuum Science and Technology Part A, 1994, 12(4): 1576–1582
https://doi.org/10.1116/1.579358
[1] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[2] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[3] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[4] Wenjie Sun, Jiale Mao, Shuang Wang, Lei Zhang, Yonghong Cheng. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications[J]. Front. Chem. Sci. Eng., 2021, 15(1): 18-34.
[5] Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion[J]. Front. Chem. Sci. Eng., 2020, 14(6): 997-1005.
[6] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
[7] Chi Him Alpha Tsang, Adilet Zhakeyev, Dennis Y.C. Leung, Jin Xuan. GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography[J]. Front. Chem. Sci. Eng., 2019, 13(4): 736-743.
[8] Ali Akbari, Nasser Arsalani, Bagher Eftekhari-Sis, Mojtaba Amini, Gholamreza Gohari, Esmaiel Jabbari. Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue[J]. Front. Chem. Sci. Eng., 2019, 13(3): 563-573.
[9] Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane[J]. Front. Chem. Sci. Eng., 2019, 13(2): 400-414.
[10] Michael Bonitz, Alexey Filinov, Jan-Willem Abraham, Karsten Balzer, Hanno Kählert, Eckhard Pehlke, Franz X. Bronold, Matthias Pamperin, Markus Becker, Dettlef Loffhagen, Holger Fehske. Towards an integrated modeling of the plasma-solid interface[J]. Front. Chem. Sci. Eng., 2019, 13(2): 201-237.
[11] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[12] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[13] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[14] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[15] Jintang Huang, Youju Huang, Si Wu. Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives[J]. Front. Chem. Sci. Eng., 2018, 12(3): 450-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed