Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 542-551    https://doi.org/10.1007/s11705-016-1599-6
RESEARCH ARTICLE
Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications
Mani Abirami,Krishnan Kannabiran()
Biomolecules and Genetic Division, School of Biosciences and Technology, VIT University, Tamil Nadu 623014, India
 Download: PDF(499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present the microbial green synthesis of silver nanoparticles (NPs) by Streptomyces ghanaensis VITHM1 strain (MTCC No. 12465). The secondary metabolites in the cell free supernatant of this bacterium when incubated with 1 mmol/L AgNO3, mediated the biological synthesis of AgNPs. The synthesized AgNPs were characterized by UV-visible spectrum, X-ray diffraction (XRD), atomic force microscope, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, FT-IR spectroscopy, dynamic light scattering and zeta potential. They were highly stable and, spherical in shape with the average size of 30?50 nm. The secondary metabolites involved in the formation of AgNPs were identified gas chromatography-mass spectrography. The 3D structure of the unit cell of the synthesized AgNPs was determined using XRD data base. The synthesized AgNPs exhibited significant antibacterial activity against tested bacterial pathogens, and did not show haemolysis on human red blood cells. This green synthesis could provide a new platform to explore and use AgNPs as antibacterial therapeutic agents.

Keywords Streptomyces ghanaensis VITHM1      nanoparticles      3D structure      antibacterial activity     
PACS:     
Fund: 
Corresponding Author(s): Krishnan Kannabiran   
Issue Date: 29 November 2016
 Cite this article:   
Mani Abirami,Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1599-6
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/542
Fig.1  UV-visible absorbance spectra of AgNPs synthesized from Streptomyces ghanaensis VITHM1
Fig.2  XRD pattern of biosynthesized AgNPs plotted against 2q in degree vs. intensity
Fig.3  Energy dispersive X-ray spectroscopy of AgNPs. (a) AgNPs showing the presence of silver, (b) scanning electron micrograph showing the formation of spherical shape of AgNPs and (c) transmission electron micrograph illustrating the spherical shape of AgNPs
Fig.4  AFM images showing the presence of glittering AgNPs
Fig.5  DLS histogram showing the size distribution of nanoparticles in colloidal solution. (a) AgNPs and (b) zeta potential graph showing negative value for AgNPs
Fig.6  Proposed mechanism of formation of AgNPs
Fig.7  3D structure of unit cell in the synthesized AgNPs
Fig.8  Antibacterial activity of biosynthesized AgNPs against tested bacterial pathogens. (a) Streptomycin disc (25 µg), (b) Culture supernatant of Streptomyces ghanaensis sp.VITHM-1 and (c) AgNPs
Bacterial strains Culture supernatant of Streptomyces ghanaensis VITHM1/mm Biologically synthesized AgNPs 100 µL/mm MIC value of AgNPs/ µg/mL MBC value of AgNPs/ µg/mL
ATCCa
Bacillus cereus (14579) 10±0.23 12±0.25 50±1.09 75±0.36
TMTCCb
Salmonella typhimurium (3224) 20±0.39 30±0.29 6.25±0.45 6.25±0.84
Haemophilus influenzae (3826) 20±0.42 32±0.54 6.25±0.34 6.25±0.92
Multidrug resistant clinical isolates
Acinetobacter baumannii 10±1.24 13±0.68 75±0.29 100±0.68
Klebsiellapneumoniae 19±0.87 22±0.12 12.5±0.78 25±0.22
Vancomycin resistant Staphylococcus aureus 20±0.67 25±0.86 12.5±0.95 25±0.42
Tab.1  Antibacterial activity, MIC and MBC of AgNPs against tested bacterial pathogens
1 Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Research in Microbiology, 2010, 161(5): 335–345
https://doi.org/10.1016/j.resmic.2010.03.011
2 Rai M K, Deshmukh S D, Ingle A P, Gade A K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Applied Microbiology, 2012, 112(5): 841–852
https://doi.org/10.1111/j.1365-2672.2012.05253.x
3 Sadowski Z, Maliszewska I H, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms. Materials Science Poland, 2008, 26: 419–424
4 Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Journal of Nanoscience and Nanotechnology, 2013, 3: 21–25
5 Iravani S, Korbekandi H, Mirmohammadi S V. Zolfaghari1 B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 2014, 9: 385–406
6 Kumar R, Roopan S M, Prabhakarn A, Khanna V G, Chakroborty S. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2012, 90: 173–176
https://doi.org/10.1016/j.saa.2012.01.029
7 Khan A K, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 2014, 13(7): 1169–1177
https://doi.org/10.4314/tjpr.v13i7.23
8 Tiwari P M, Vig K, Dennis V K, Singh S R. Functionalized gold nanoparticles and their biomedical applications. Journal of Nanomaterials, 2011, 1(1): 31–63
https://doi.org/10.3390/nano1010031
9 Landage S M, Wasif A I. Nanosilver: An effective antimicrobial agent for finishing of textiles. International Journal of Engineering Sciences & Engineering Technologies, 2012, 4: 66–78
10 Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335
https://doi.org/10.1016/j.colsurfb.2009.07.048
11 Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335
https://doi.org/10.1016/j.colsurfb.2009.07.048
12 Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 2008, 62(29): 4411–4413
https://doi.org/10.1016/j.matlet.2008.06.051
13 Choi J, Reipa V, Hitchins V M, Goering P L, Malinauskast R A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Journal of Toxicological Sciences, 2011, 123(1): 133–143
https://doi.org/10.1093/toxsci/kfr149
14 Abirami M. khanna V G, Kannabiran K. Antibacterial activity of marine Streptomyces sp. isolated from Andaman & Nicobar Islands, India. International Journal of Pharma and Bio Sciences, 2013, 4: 280–286
15 Thenmozhi M, Kannabiran K, Kumar R, Gopiesh K V. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. Journal of Medical Mycology, 2013, 23(2): 97–103
https://doi.org/10.1016/j.mycmed.2013.04.005
16 Bauer A W, Kirby W M, Sherris J C, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 1966, 45: 493–496
17 Sanjenbam P, Gopal J V, Kannabiran K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. Journal de Mycologie M�dicale, 2014, 24(3): 211–219
https://doi.org/10.1016/j.mycmed.2014.03.004
18 Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4(3): 707–716
https://doi.org/10.1016/j.actbio.2007.11.006
19 Raveendran P, Fu J, Wallen S L. Completely green synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003, 125(46): 13940–13941
https://doi.org/10.1021/ja029267j
20 Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyceshy groscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surfaces. B, Biointerfaces, 2010, 81(1): 358–362
https://doi.org/10.1016/j.colsurfb.2010.07.036
21 Philip D.Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimca Acta Part A Molecular and Biomolecular spectroscopy, 2009, 73: 374–380
22 Azam A, Ahmed A S, Oves M, Khan M S, Habib S S, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 2012, 7: 6003–6009
https://doi.org/10.2147/IJN.S35347
23 Kumar S, Balachandran C, Duraipandian V, Ramasamy D, Ignacimuth I. AL-Dhabi N A. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 2015, 5(2): 169–180
https://doi.org/10.1007/s13204-014-0304-7
24 Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters, 2010, 64(13): 1445–1447
https://doi.org/10.1016/j.matlet.2010.03.051
25 Kalishwaralal K, Deepak V, Pandian S R, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces. B, Biointerfaces, 2010, 77(2): 257–262
https://doi.org/10.1016/j.colsurfb.2010.02.007
26 Klueh U, Wagner V, Kelly S, Johnson A, Bryers J D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2000, 53(6): 621–631
https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
27 Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 2012, 12(8): 4271–4275
https://doi.org/10.1021/nl301934w
28 Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science. Materials in Medicine, 2013, 24(6): 1465–1471
https://doi.org/10.1007/s10856-013-4894-5
29 Golińska P, Wypij M, Rathod D, Tickar S, Dahm H, Rai M. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 2015, 56(5): 541–556
https://doi.org/10.1002/jobm.201500516
30 Railean-Plugaru V, Pomastowski P, Wypij M, Szultka-MLynska M, Rafinska K, Golinska P, Dahm H, Buszewski B. Study of silver nanoparticles synthesized by acidophilic strain of actinobacteria isolated from the Picea sitchensis forest soil. Journal of Applied Microbiology, 2016, 120(5): 1250–1263
https://doi.org/10.1111/jam.13093
31 Kamel Z, Saleh M, El Namoury N. Biosynthesis, characterization, and antimicrobial activity of silver nanoparticles from actinomycetes. Research Journal of Pharmaceutical. Biological and Chemical Sciences, 2016, 1: 119–127
32 Oves M, Khan M S, Zaidi A, Ahmed A S, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 2013, 8(3): e59140
https://doi.org/10.1371/journal.pone.0059140
[1] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[2] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[3] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[4] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[5] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[6] Vo-Van Giau, Yoon-Hee Park, Kyu-Hwan Shim, Sang-Wook Son, Seong-Soo A. An. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media[J]. Front. Chem. Sci. Eng., 2019, 13(1): 90-97.
[7] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[8] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[9] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[10] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[11] Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[12] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[13] Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
[14] Wenchao Zhang,Lin Zhang,Yan Sun. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine[J]. Front. Chem. Sci. Eng., 2015, 9(4): 494-500.
[15] Han-Wen Cheng,Jin Luo,Chuan-Jian Zhong. SERS nanoprobes for bio-application[J]. Front. Chem. Sci. Eng., 2015, 9(4): 428-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed