Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 499-508    https://doi.org/10.1007/s11705-016-1602-2
RESEARCH ARTICLE
Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach
Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar()
Environmental Biotechnology Division, CSIR–National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
 Download: PDF(296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Chlorella microalgae were mixotrophically cultivated in an unsterilized and unfiltered raw food-processing industrial wastewater. Both inorganic carbon (CO2-air) and organic carbon (wastewater) were provided simultaneously for microalgae growth. The aim of the study is to find out the utilization rates of total organic carbon (TOC) and chemical oxygen demand (COD) under mixotrophic conditions for a given waste water. About 90% reduction in TOC and COD were obtained for all dilutions of wastewater. Over 60% of nitrate and 40% of phosphate were consumed by microalgae from concentrated raw wastewater. This study shows that microalgae can use both organic and inorganic sources of carbon in more or less quantity under mixotrophic conditions. The growth of microalgae in food-processing industrial wastewater with all studied dilution factors, viz. zero (raw), 1.6 (dilution A), and 5 (dilution B) suggests that the freshwater requirement could be reduced substantially (20%–60%). The degradation kinetics also suggests that the microalgae cultivation on a high COD wastewater is feasible and scalable.

Keywords total organic carbon      wastewater bioremediation      kinetics      mixotrophic cultivation     
Corresponding Author(s): Sanjay B. Pawar   
Online First Date: 21 November 2016    Issue Date: 29 November 2016
 Cite this article:   
Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1602-2
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/499
Fig.1  Scheme 1Wastewater treatment process coupled with microalgae cultivation
Parameter Value
Color Whitish
pH 7.2
Nitrate /(mg·L–1) 42±12
Phosphate /(mg·L–1) 24±8
COD /(mg·L–1) 5040±150
TOC /(mg·L–1) 1695
BOD5 /(mg·L–1) 2350±110
Total dissolved solids /(mg·L–1) 4300
BOD5/COD 0.46
Total suspended solids /(mg·L–1) 520±125
Tab.1  Physicochemical characteristics of food processing industrial wastewater
Fig.2  Scheme of experimental set-up
Cultivation
mode
Microalgae sp. Wastewater type Range of COD/TOC actually studied/
(mg·L–1)
Carbon removal /% Nitrogen removal /% Phosphorus removal /% Ref.
Mixotrophic Euglena gracilis sp. Chlorella pyrenoidosa Dairy effluent 2900 COD 80?86 COD 96?100 NH3-N 98 PO4-P [9]
Mixotrophic Scenedesmus sp. Mixed municipal, dairy, pulp & paper wastewater 1905 COD 92.7
COD
>95 NH4 >95 PO4 [10]
Mixotrophic Scenedesmus obliquus Municipal waste water with food waste water ~56?220 TOC 58?74
TOC
83?97 TN 82?89 TP [18]
Autotrophic-heterotrophic Chlorella pyrenoidosa Anaerobic digested starch processing wastewater 196.9?209.1 TOC 53.8?71.9 TOC 69.3?85.1
TN
95.2?100 TP [22]
Phototrophic-heterotrophic Chlorella pyrenoidosa Anaerobic digested starch processing wastewater 702.4? 1026.2
COD
65.99
COD
83.06 TN 96.97 TP [25]
Mixotrophic Scenedesmus bijuga Anaerobic digested food wastewater 630.3?238.48 COD 66.4
COD
90.7 TN 90.5 TP [26]
Mixotrophic Chlorella pyrenoidosa Soybean processing wastewater 3000?3750 COD 77.8
COD
88.8TN 70.3 TP [27]
Mixotrophic Chlorella sp. Food processing industrial wastewater 1000?5000 COD
(420 –1695 TOC)
90?92 TOC, 78–91 COD 58?90 NO3-N 43?62
PO4-P
This study
Tab.2  Removal of COD and nutrients from various food processing wastewaters using microalgae
Fig.3  TOC removal for different COD concentrations of food industry wastewater at different initial concentrations of microalgae inoculum: (a) raw (COD: 5000 mg·L–1), (b) dilution A (COD: 3000 mg·L–1), and (c) dilution B (COD: 1000 mg·L–1)
Fig.4  TIC removal for different COD concentrations of food industry wastewater at different initial concentrations of microalgae inoculum: (a) raw (COD 5000 mg·L–1), (b) dilution A (COD 3000 mg·L–1), and (c) dilution B (COD 1000 mg·L–1)
Fig.5  The ratio of reduction in COD with respect to the initial COD concentration (CODo) for different COD dilutions and different initial microalgae inoculum percentages: (a) raw (COD 5000 mg·L–1), (b) dilution A (COD 3000 mg·L–1), and (c) dilution B (COD 1000 mg·L–1)
Fig.6  Treatment of raw food processing industrial wastewater (COD: ~ 5000 mg·L–1) using microalgae : nutrient removal with respect to inoculum size (error bar accounts 15% error amount)
Fig.7  Total solid content of raw food processing industrial wastewater with respect to time for different initial inoculum concentrations
Fig.8  Biodegradation kinetics of TOC removal from food processing industry wastewater: (a) inoculum size 10%, (b) inoculum size 20%, and (c) inoculum size 30%
Inoculum size % Dilution B
(COD0 1000 mg·L–1)
Dilution A
(COD0 3000 mg·L–1)
Raw
(COD0 5000 mg·L–1)
TOC removal COD removal TOC removal COD removal TOC removal COD removal
k /day–1 R2 k /day–1 R2 k /day–1 R2 k /day–1 R2 k /day–1 R2 k /day–1 R2
10 0.543 0.965 0.466 0.957 0.579 0.922 0.594 0.939 0.365 0.802 0.114 0.849
20 0.45 0.959 0.497 0.964 0.575 0.952 0.546 0.919 0.441 0.823 0.181 0.804
30 0.405 0.968 0.224 0.981 0.172 0.945 0.102 0.949 0.274 0.859 0.249 0.862
Tab.3  Biodegradation kinetics on the basis of TOC and COD removal
1 Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen M. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 2011, 102(1): 159–165
https://doi.org/10.1016/j.biortech.2010.07.017
2 Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 2011, 102(1): 106–110
https://doi.org/10.1016/j.biortech.2010.06.017
3 Kim S, Park J, Cho Y, Hwang S. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology, 2013, 144: 8–13
https://doi.org/10.1016/j.biortech.2013.06.068
4 Mennaa F Z, Arbib Z, Perales J A. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvest ability. Water Research, 2015, 83: 42–51
https://doi.org/10.1016/j.watres.2015.06.007
5 Zhang S S, Liu H, Fan J F, Yu H. Cultivation of Scenedesmusdimorphus with domestic secondary effluent and energy evaluation for biodiesel production. Environmental Technology, 2015, 36(7): 929–936
https://doi.org/10.1080/09593330.2014.966769
6 Wang H, Xiong H, Hui Z, Zeng X. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology, 2012, 104: 215–220
https://doi.org/10.1016/j.biortech.2011.11.020
7 Abreu A P, Fernandes B, Vicente A A, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 2012, 118: 61–66
https://doi.org/10.1016/j.biortech.2012.05.055
8 Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S. Cultivation of microalgae in dairy farm wastewater without sterilization. International Journal of Phytoremediation, 2015, 17(3): 222–227
https://doi.org/10.1080/15226514.2013.876970
9 Zhan J, Zhang Q, Qin M, Hong Y. Selection and characterization of eight fresh water green algae strains for synchronous water purification and lipid production. Frontiers of Environmental Science & Engineering, 2016, 10(3): 548–558
https://doi.org/10.1007/s11783-016-0831-4
10 Gentili F G. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresource Technology, 2014, 169: 27–32
https://doi.org/10.1016/j.biortech.2014.06.061
11 Travieso L, Benitez F, Sanchez E, Borja R, Raposo F, Rincon B. Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Environmental Technology, 2008, 29(9): 985–992
https://doi.org/10.1080/09593330802166228
12 Mata T M, Melo A C, Simoes M, Caetano N S. Parametric study of a brewery effluent treatment by microalgae Scenedesmusobliquus. Bioresource Technology, 2012, 107: 151–158
https://doi.org/10.1016/j.biortech.2011.12.109
13 Pawar S. Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable & Sustainable Energy Reviews, 2016, 62: 640–653
https://doi.org/10.1016/j.rser.2016.04.074
14 Smith R T, Bangert K, Wilkinson S J, Gilmour D J. Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractiniuminermum. Biomass and Bioenergy, 2015, 82: 73–86
https://doi.org/10.1016/j.biombioe.2015.04.023
15 Perez-Garcia O, Escalante F M E, de-Bashan L E, Bashan Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 2011, 45(1): 11–36
https://doi.org/10.1016/j.watres.2010.08.037
16 Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti G M. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresource Technology, 2012, 104: 523–529
https://doi.org/10.1016/j.biortech.2011.10.025
17 Godos I, Blanco S, Garcia-Encina P A, Becares E, Munoz R. Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters. Journal of Hazardous Materials, 2010, 179(1-3): 1049–1054
https://doi.org/10.1016/j.jhazmat.2010.03.112
18 Ji M K, Yun H S, Park Y T, Kabra A N, Oh I H, Choi J. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. Journal of Environmental Management, 2015, 159: 115–120
https://doi.org/10.1016/j.jenvman.2015.05.037
19 Chandra R, Rohit M V, Swamy Y V, Venkata Mohan S. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology, 2014, 165: 279–287
https://doi.org/10.1016/j.biortech.2014.02.102
20 Chen F, Johns M R. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. Journal of Applied Phycology, 1995, 7(1): 43–46
https://doi.org/10.1007/BF00003548
21 Shen Q H, Jiang J W, Chen L P, Cheng L H, Xu X H, Chen H L. Effect of carbon source on biomass growth and nutrients removal of Scenedesmusobliquus for wastewater advanced treatment and lipid production. Bioresource Technology, 2015, 190: 257–263
https://doi.org/10.1016/j.biortech.2015.04.053
22 Chu H Q, Tan X B, Zhang Y L, Yang L B, Zhao F C, Guo J. Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors. Bioresource Technology, 2015, 185: 40–48
https://doi.org/10.1016/j.biortech.2015.02.030
23 Perez-Garcia O, Bashan Y, Puente M E. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga chlorella vulgaris. Journal of Phycology, 2011, 47(1): 190–199
https://doi.org/10.1111/j.1529-8817.2010.00934.x
24 APHA. AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association, 2005, 389–392
25 Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresource Technology, 2014, 170: 538–548
https://doi.org/10.1016/j.biortech.2014.07.086
26 Shin D Y, Cho H U, Utomo J C, Choi Y N, Xu X, Park J M. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresource Technology, 2015, 184: 215–221
https://doi.org/10.1016/j.biortech.2014.10.090
27 Su H, Yalei Z, Zhang C, Zhang X, Li J. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 2011, 102(21): 9884–9890
https://doi.org/10.1016/j.biortech.2011.08.016
28 Posadas E, Bochon S, Coca M, Garcia-Gonzalez M C, Garcia-Encina P A, Munoz R. Microalgae-based agro-industrial wastewater treatment: A preliminary screening of biodegradability. Journal of Applied Phycology, 2014, 26(6): 2335–2345
https://doi.org/10.1007/s10811-014-0263-0
29 Li Y, Chen Y F, Chen P, Min M, Zhoi W, Martinez B, Zhu J, Ruan R. Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 2011, 102(8): 5138–5144
https://doi.org/10.1016/j.biortech.2011.01.091
30 Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater born and settleable algal-bacterial culture. Water Research, 2011, 45(11): 3351–3358
https://doi.org/10.1016/j.watres.2011.03.046
31 Wang Y, Guo W, Yen H W, Ho S H, Lo Y C, Cheng C L, Ren N, Chang J S. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 2015, 198: 619–625
https://doi.org/10.1016/j.biortech.2015.09.067
[1] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[2] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
[3] Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
[4] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[5] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[6] Tiantian LIU, Yuanyuan RAN, Bochao WANG, Weibing DONG, Songgu WU, Junbo GONG. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
[7] Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
[8] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[9] Xingfu SONG, Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU. Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide[J]. Front Chem Sci Eng, 2013, 7(2): 210-217.
[10] T. A. Lasheen, M. E. El-Ahmady, H. B. Hassib, A. S. Helal. Oxidative leaching kinetics of molybdenum-uranium ore in H2SO4 using H2O2 as an oxidizing agent[J]. Front Chem Sci Eng, 2013, 7(1): 95-102.
[11] Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor[J]. Front Chem Sci Eng, 2011, 5(2): 252-257.
[12] Bingnan REN. Kinetics and thermodynamics of the phosphine adsorption on the modified activated carbon[J]. Front Chem Sci Eng, 2011, 5(2): 203-208.
[13] Zhen CHEN, Haitao ZHANG, Weiyong YING, Dingye FANG. Study on direct alcohol/ether fuel synthesis process in bubble column slurry reactor[J]. Front Chem Eng Chin, 2010, 4(4): 461-471.
[14] Tianlong DENG, Yafei GUO, Mengxia LIAO, Dongchan LI. Silver-catalyzed bioleaching for raw low-grade copper sulphide ores[J]. Front Chem Eng Chin, 2009, 3(3): 250-254.
[15] Zheng WANG, Zai-Sha MAO, Chao YANG, Qinghua ZHANG, Jingcai CHENG. Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank[J]. Front Chem Eng Chin, 2009, 3(3): 272-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed