Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 177-184    https://doi.org/10.1007/s11705-016-1604-0
RESEARCH ARTICLE
A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst
Enxian Yuan1, Xiangwei Ren3, Li Wang1,2(), Wentao Zhao3
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
3. School of Science, Tianjin University, Tianjin 300072, China
 Download: PDF(346 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hydrogenation of 2-ethylanthraquinone (eAQ), 2-tert-amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH2 and taAQH2) were studied over a Pd/Al2O3 catalyst in a semi-batch slurry reactor at 60 °C and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H2O2 and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H2O2yields and the highest amounts of degradation products.

Keywords hydrogenation      hydrogen peroxide      anthraquinone      Pd catalyst      AO process     
Corresponding Author(s): Li Wang   
Online First Date: 30 December 2016    Issue Date: 12 May 2017
 Cite this article:   
Enxian Yuan,Xiangwei Ren,Li Wang, et al. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1604-0
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/177
Fig.1  Secheme 1The main steps of the AO process and typical side reactions that occur during the hydrogenation step
Fig.2  (a) XRD pattern, (b) nitrogen adsorption-desorption isotherm (inset: pore size distribution), (c) SEM image (inset: TEM image) and (d) XPS spectra of the Pd/Al2O3 catalyst (experimental data: dotted line, fitted data: solid line)
Fig.3  Ratio of hydrogen consumption to the initial amount of aAQ (Rhc) for different aAQs (catalyst amount= 10 g/L, c0aAQ = 0.45 mol/L, 0.3 MPa and 60 °C)
Fig.4  Yield of H2O2 obtained using different aAQs (catalyst amount= 10 g/L, c0aAQ = 0.45 mol/L, 0.3 MPa and 60 ºC)
Fig.5  Yield of by-products for (a) eAQ and (b) taAQ hydrogenation (catalyst amount= 10 g/L, c0aAQ= 0.45 mol/L, 0.3 MPa and 60 °C)
Fig.6  Yield of by-products for (a) 1eAQ+ 1taAQ and (b) 1eAQ+ 2taAQ hydrogenation (catalyst amount= 10 g/L,c0aAQ = 0.45 mol/L, 0.3 MPa and 60 °C)
Tab.1  Adsorption and desorption energies of aAQs, C?O bond lengths and C?Pd and O?Pd distances of adsorbed aAQs
Fig.7  Optimized structure of aAQ adsorbed on the Pd (111) facet: (a) eAQ and (b) taAQ ( : Pd; : C; : O; : H)
1 Hong R, Feng  J, He Y ,  Li D. Controllable preparation and catalytic performance of Pd/anodic alumina oxide@Al catalyst for hydrogenation of ethylanthraquinone. Chemical Engineering Science, 2015, 135: 274–284
https://doi.org/10.1016/j.ces.2015.04.003
2 Fan S, Yi  J, Wang L ,  Mi Z. Direct synthesis of hydrogen peroxide from H2/O2 using Pd/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 2007, 92(1): 175–182
https://doi.org/10.1007/s11144-007-5062-z
3 Okninski A, Bartkowiak  B, Sobczak K ,  Kublik D ,  Surmacz P ,  Rarata G ,  Marciniak B ,  Wolanski P . 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014
4 Wang Q, Wang  L, Wang Y ,  He F, Li  Z, Mi Z . Study on deactivation and regeneration of Pd/Al2O3 catalyst in hydrogen peroxide production by the anthraquinone process. Reaction Kinetics and Catalysis Letters, 2004, 81(2): 297–304
https://doi.org/10.1023/B:REAC.0000019436.13144.29
5 Liu G, Duan  Y, Wang Y ,  Wang L, Mi  Z. Periodically operated trickle-bed reactor for EAQs hydrogenation: Experiments and modeling. Chemical Engineering Science, 2005, 60(22): 6270–6278
https://doi.org/10.1016/j.ces.2005.03.028
6 Sandelin F, Oinas  P, Salmi T ,  Paloniemi J ,  Haario H . Kinetics of the recovery of active anthraquinones. Industrial & Engineering Chemistry Research, 2006, 45(3): 986–992
https://doi.org/10.1021/ie050593s
7 Sandelin F, Oinas  P, Salmi T ,  Paloniemi J ,  Haario H . Dynamic modelling of catalytic liquid-phase reactions in fixed beds—kinetics and catalyst deactivation in the recovery of anthraquinones. Chemical Engineering Science, 2006, 61(14): 4528–4539
https://doi.org/10.1016/j.ces.2006.02.021
8 Drelinkiewicz A. Deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2 catalyst in the liquid phase. Journal of Molecular Catalysis A Chemical, 1992, 75(3): 321–332
https://doi.org/10.1016/0304-5102(92)80134-3
9 Drelinkiewicz A, Waksmundzka-Góra  A. Investigation of 2-ethylanthraquinone degradation on palladium catalysts. Journal of Molecular Catalysis A Chemical, 2006, 246(1-2): 167–175
https://doi.org/10.1016/j.molcata.2005.10.026
10 Li J, Yao  H, Wang Y ,  Luo G. One-step preparation of Pd-SiO2 composite microspheres by the sol-gel process in a microchannel. Industrial & Engineering Chemistry Research, 2014, 53(26): 10660–10666
https://doi.org/10.1021/ie5009458
11 Shen C, Wang  Y, Xu J ,  Lu Y, Luo  G. Preparation and the hydrogenation performance of a novel catalyst-Pd nanoparticles loaded on glass beads with an egg-shell structure. Chemical Engineering Journal, 2011, 173(1): 226–232
https://doi.org/10.1016/j.cej.2011.07.025
12 Feng J, Wang  H, Evans D G ,  Duan X, Li  D. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Applied Catalysis A, General, 2010, 382(2): 240–245
https://doi.org/10.1016/j.apcata.2010.04.052
13 Tang P, Chai  Y, Feng J ,  Feng Y, Li  Y, Li D . Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor. Applied Catalysis A, General, 2014, 469: 312–319
https://doi.org/10.1016/j.apcata.2013.10.008
14 Chen H, Huang  D, Su X ,  Huang J ,  Jing X, Du  M, Sun D ,  Jia L, Li  Q. Fabrication of Pd/γ-Al2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinone assisted by plant-mediated strategy. Chemical Engineering Journal, 2015, 262: 356–363
https://doi.org/10.1016/j.cej.2014.09.117
15 Shang H, Zhou  H, Zhu Z ,  Zhang W . Study on the new hydrogenation catalyst and processes for hydrogen peroxide through anthraquinone route. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1851–1857
https://doi.org/10.1016/j.jiec.2012.04.017
16 Santacesaria E, Serio  M D, Russo  A, Leone U ,  Velotti R . Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone. Chemical Engineering Science, 1999, 54(13-14): 2799–2806
https://doi.org/10.1016/S0009-2509(98)00377-7
17 Tan J, Zhang  J, Lu Y ,  Xu J, Luo  G. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(5): 1326–1335
https://doi.org/10.1002/aic.12670
18 Santacesaria E, Serio  M D, Velotti  R, Leone U . Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst. Journal of Molecular Catalysis A Chemical, 1994, 94(1): 37–46
https://doi.org/10.1016/0304-5102(94)87028-4
19 Kosydar R, Drelinkiewicz  A, Ganhy J P . Degradation reactions in anthraquinone process of hydrogen peroxide synthesis. Catalysis Letters, 2010, 139(3-4): 105–113
https://doi.org/10.1007/s10562-010-0413-1
20 Drelinkiewicz A. Kinetic aspects in the selectivity of deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2. Journal of Molecular Catalysis A Chemical, 1995, 101(1): 61–74
https://doi.org/10.1016/1381-1169(95)00048-8
21 Petr J, Kurc  L, Bělohlav Z ,  Červený L . Catalytic hydrogenation of 2-ethyl-9,10-anthrahydroquinone. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 887–894 
https://doi.org/10.1016/S0255-2701(03)00111-9
22 Jia X, Yang  Y, Liu G ,  Pan Z. Solubility of 2-tert-butylanthraquinone in binary solvents. Fluid Phase Equilibria, 2014, 376: 165–171
https://doi.org/10.1016/j.fluid.2014.06.002
23 Li X, Su  H, Ren G ,  Wang S. Effect of metal dispersion on the hydrogenation of 2-amyl anthraquinone over Pd/Al2O3 catalyst. Journal of the Brazilian Chemical Society, 2016, 27(6): 1060–1066
24 Yuan E, Wu  C, Liu G ,  Wang L. One-pot synthesis of Pd nanoparticles on ordered mesoporous Al2O3 for catalytic hydrogenation of 2-ethyl-anthraquinone. Applied Catalysis A, General, 2016, 525: 119–127
https://doi.org/10.1016/j.apcata.2016.07.015
25 Liu D, Zhang  J, Li D ,  Kong Q, Zhang  T, Wang S . Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 726–736
https://doi.org/10.1002/aic.11696
26 Berglin T, Schoeoen  N H. Kinetic and mass transfer aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(4): 615–621
https://doi.org/10.1021/i200015a005
27 Fajt V, Kurc  L, Červený L. The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1,2,3,4-tetrahydroanthracene-9,10-dione. International Journal of Chemical Kinetics, 2008, 40(5): 240–252
https://doi.org/10.1002/kin.20309
28 Drelinkiewicz A, Laitinen  R, Kangas R ,  Pursiainen J . 2-Ethylanthraquinone hydrogenation on Pd/Al2O3. Applied Catalysis A, General, 2005, 284(1-2): 59–67
https://doi.org/10.1016/j.apcata.2005.01.018
29 Santacesaria E, Serio  M D, Velotti  R, Leone U . Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Industrial & Engineering Chemistry Research, 1994, 33(2): 277–284
https://doi.org/10.1021/ie00026a016
30 Li Y, Feng  J, He Y ,  Evans D G ,  Li D. Controllable synthesis, structure, and catalytic activity of highly dispersed Pd catalyst supported on whisker-modified spherical alumina. Industrial & Engineering Chemistry Research, 2012, 51(34): 11083–11090
https://doi.org/10.1021/ie300385h
[1] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[2] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[3] Hongbo Li, Bo Zheng, Zhiyong Pan, Baoning Zong, Minghua Qiao. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production[J]. Front. Chem. Sci. Eng., 2018, 12(1): 124-131.
[4] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[5] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[6] Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
[7] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
[8] Qiang Wei, Jinwen Chen, Chaojie Song, Guangchun Li. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 336-348.
[9] Alan J. McCue, James A. Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(2): 142-153.
[10] Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
[11] CHENG Yongxi, LI Hongtao, WANG Li, LÜ Shuxiang. Reactive extraction for preparation of hydrogen peroxide under pressure[J]. Front. Chem. Sci. Eng., 2008, 2(3): 335-340.
[12] ZHOU Jun, CHU Wei, ZHANG Hui, XU Huiyuan, ZHANG Tao. Effect of Fe content on FeMn catalysts for light alkenes synthesis[J]. Front. Chem. Sci. Eng., 2008, 2(3): 315-318.
[13] FAN Qingming, LIU Yingxin, ZHENG Yifan, YAN Wei. Preparation of Ni/SiO catalyst in ionic liquids for hydrogenation[J]. Front. Chem. Sci. Eng., 2008, 2(1): 63-68.
[14] XUE Ping, WU Tao. Asymmetric transfer hydrogenation of prochiral ketone catalyzed over Fe-CS/SBA-15 catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(3): 251-255.
[15] LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene[J]. Front. Chem. Sci. Eng., 2007, 1(3): 287-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed