Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 266-279    https://doi.org/10.1007/s11705-017-1608-4
RESEARCH ARTICLE
Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane
Kanchapogu Suresh, G. Pugazhenthi(), R. Uppaluri
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
 Download: PDF(685 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work targets the preparation and characterization of an inexpensive TiO2-fly ash composite membrane for oily wastewater treatment. The composite membrane was fabricated by depositing a hydrophilic TiO2 layer on a fly ash membrane via the hydrothermal method, and its structural, morphological and mechanical properties were evaluated. The separation potential of the composite membrane was evaluated for 100–200 mg·L–1 synthetic oily wastewater solutions. The results show that the composite membrane has excellent separation performance and can provide permeate stream with oil concentration of only 0.26–5.83 mg·L–1. Compared with the fly ash membrane in the average permeate flux and performance index (49.97 × 10–4 m3·m–2·s–1 and 0.4620%, respectively), the composite membrane exhibits better performance (51.63 × 10−4 m3·m−2·s−1 and 0.4974%). For the composite ash membrane, the response surface methodology based analysis inferred that the optimum process parameters to achieve maximum membrane flux and rejection are 207 kPa, 200 mg·L–1 and 0.1769 m·s–1 for applied pressure, feed concentration and cross flow velocity, respectively. Under these conditions, predicted responses are 41.33 × 10–4 m3·m−2·s−1 permeate flux and 98.7% rejection, which are in good agreement with the values obtained from experimental investigations (42.84 × 10−4 m3·m−2·s−1 and 98.82%). Therefore, we have demonstrated that the TiO2-fly ash composite membrane as value added product is an efficient way to recycle fly ash and thus mitigate environmental hazards associated with the disposal of oily wastewaters.

Keywords TiO2-fly ash membrane      oily wastewater      fouling      microfiltration     
Corresponding Author(s): G. Pugazhenthi   
Online First Date: 06 January 2017    Issue Date: 12 May 2017
 Cite this article:   
Kanchapogu Suresh,G. Pugazhenthi,R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1608-4
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/266
Raw materialsFly ash membrane /wt-%
Fly ash80
Quartz10
Calcium carbonate10
Tab.1  Materials used to make fly ash membrane
Fig.1  (a?b) Contact angle, (c?d) FESEM images and (e) EDX analysis of fly ash and TiO2-fly ash membranes
Fig.2  Trans-membrane flux profiles of TiO2-fly ash composite (filled symbol) and fly ash membranes (unfilled symbol). n, □: 69 kPa; l, ○: 138 kPa; ?,D: 207 kPa
Fig.3  Time dependent rejection profiles of TiO2-fly ash composite (filled symbol) and fly ash membranes (unfilled symbol). n, □: 69 kPa; l, ○: 138 kPa; ?, D: 207 kPa
Fig.4  Performance indices of TiO2-fly ash composite (filled symbol) and fly ash membranes (unfilled symbol)
ReferenceMaterialPore size /µmFeed concentration /(mg?L?1)Oil droplet size /µmCross flow velocity /(m?s?1)Permeability
/m3?m?2?s?1?kPa?1
Rejection /%
[]Al2O3-PVDF?15.5?7.84.1614 × 10?798.04
[]α-Al2O30.05500?1.681.775 × 10?798.1
[]ZrO2-Al2O30.210001.795?98.7
[]TiO2-Al2O36<40000.7?20?8.8889 × 10?7>99.9
[]TiO2-Mullite0.112001.090.154.1667 × 10?797TOC
This workTiO2-fly ash1.122006.7160.17692.07 × 10?598.82
This workFly ash1.302006.7160.17691.98 × 10?598.37
Tab.2  Summary of membrane flux and rejection data for TiO2-fly ash composite membrane, fly ash membrane and membranes reported in the literature
Run orderPressure /kPaConcentration /(mg?L?1)Cross flow velocity /(m?s?1)Permeate flux, J /(×104m3?m?2?s?1)Rejection /%
TiO2-fly ashFly ashTiO2-fly ashFly ash
X1X2X3ActualPredictedActualPredictedActualPredictedActualPredicted
1691000.088512.9313.269.9511.498.5398.4397.9197.44
22071000.088541.2239.5037.9437.0396.4896.594.6994.62
3692000.08859.169.177.015.5499.5399.899.4599.48
42072000.088532.0231.4730.2427.3599.1598.9198.8298.77
5691000.176923.8423.2121.9422.6797.297.2194.994.89
62071000.176951.6450.4449.9749.2896.3495.8592.4792.38
7692000.176917.5018.0415.7514.599.2799.0299.1699.16
82072000.176942.8541.3340.937.2898.8298.798.3798.77
921.961500.13277.817.086.585.8598.9498.8798.5298.76
10254.041500.132746.3348.7342.7846.5696.5996.9896.296.05
1113865.910.132733.2834.6233.4732.0896.1796.492.2992.64
12138234.090.132723.1823.5212.6117.0699.8699.9699.9999.73
131381500.058418.7719.3515.7316.9598.6598.5898.0398.32
141381500.20734.9236.0232.9534.7896.9897.3796.3996.18
151381500.132727.3326.8524.1724.1897.7197.697.0397.07
161381500.132726.0926.8525.1624.1897.6997.696.2297.07
171381500.132725.4726.8523.1424.1897.0797.698.1897.07
181381500.132727.2626.8524.1724.1896.8197.697.0397.07
191381500.132728.2526.8524.7724.1897.7197.696.9497.07
201381500.132726.9926.8524.1724.1898.6597.697.0397.07
Tab.3  Summary of RSM design based predicted and actual flux and rejection values for TiO2-fly ash and fly ash membranes
SourcePermeate fluxRejection
Sum of squaresdfMean squareF-valuep-value
(prob>F)
Sum of
squares
dfMean
square
F-Valuep-value
(prob>F)
Model2596.899288.54128.79<0.000123.0192.568.860.0010
X1-pressure /kPa2093.4612093.46934.41<0.00014.3414.3415.040.0031
X2-conc. /(mg?L?1)148.691148.6966.37<0.000115.23115.2352.79<0.0001
X3-CFV /(m?s?1)335.251335.25149.64<0.00011.7411.746.030.0339
X1X27.7717.773.470.09220.5410.541.880.2008
X1X30.4910.490.220.64910.1610.160.560.4700
X2X30.5910.590.260.620.0910.090.340.5753
X122120.890.36670.1910.190.660.4343
X228.8518.853.950.0750.6110.612.120.1760
X321.2411.240.560.47330.2610.260.890.3670
Residual22.4102.242.88100.29
Lack of fit17.5753.513.630.09160.8550.170.420.8220
Pure error4.8450.972.0450.41
Cor total2619.31925.9019
Std. dev.1.5R20.99140.54R20.8886
Mean27.84Adj R20.983797.91Adj R20.7883
C.V. /%5.38Pred R20.94590.55Pred R20.627
PRESS141.82Adeq precision40.9659.66Adeq precision10.815
Tab.4  ANOVA results for trans-membrane flux and rejection response surface quadratic model of TiO2-fly ash membrane
SourcePermeate fluxRejection
Sum of
squares
dfMean
square
F-valuep-value
(prob>F)
Sum of
squares
dfMean
square
F-valuep-value
(prob>F)
Model2678.429297.640.8<0.000181.799.0832.83<0.0001
X1-pressure /kPa2000.4912000.49274.28<0.00018.8418.8431.960.0002
X2-conc. /(mg?L?1)272.161272.1637.320.000160.65160.65219.32<0.0001
X3-CFV /(m?s?1)383.891383.8952.63<0.00015.5715.5720.150.0012
X1X27.2917.2910.34092.2412.248.090.0174
X1X30.4810.480.0650.80330.0510.050.180.6805
X2X32.6712.670.370.55872.5212.529.110.0129
X127.4117.411.020.33740.2110.210.740.4085
X220.2710.270.0370.85041.4111.415.080.0478
X325.1315.130.70.42130.06110.0610.220.6481
Residual72.94107.292.77100.28
Lack of fit70.64514.1330.70.00090.850.160.410.825
Pure error2.350.461.9650.39
Cor total2751.361984.4719
Std. dev.2.7R20.97350.53R20.9673
Mean25.17Adj R20.949696.98Adj R20.9378
C.V. %10.73Pred R20.80390.54Pred R20.8922
PRESS539.44Adeq precision22.9049.11Adeq precision19.767
Tab.5  ANOVA results for trans-membrane flux and rejection response surface quadratic model of fly ash membrane
Fig.5  Trans-membrane flux and rejection surface plots as a function of (a,b) pressure and concentration, (c,d) pressure and cross flow velocity, and (e, f) concentration and cross flow velocity for the TiO2-fly ash composite membrane
1 Ezzati A, Gorouhi E, Mohammadi T. Separation of water in oil emulsions using microfiltration. Desalination, 2005, 185(1-3): 371–382
https://doi.org/10.1016/j.desal.2005.03.086
2 Arnot T C, Field R W, Koltuniewicz A B. Cross-flow and dead-end microfiltration of oily-water emulsions. Journal of Membrane Science, 2000, 169(1): 1–15
https://doi.org/10.1016/S0376-7388(99)00321-X
3 Cumming I W, Holdich R G, Smith I D. The rejection of oil by microfiltration of a stabilised kerosene/water emulsion. Journal of Membrane Science, 2000, 169(1): 147–155
https://doi.org/10.1016/S0376-7388(99)00338-5
4 Mohammadi T, Pak A, Karbassian M, Golshan M. Effect of operating conditions on microfiltration of an oil-water emulsion by a kaolin membrane. Desalination, 2004, 168: 201–205
https://doi.org/10.1016/j.desal.2004.06.188
5 Hua F L, Tsang Y F, Wang Y J, Chan S Y, Chuand H, Sin H N. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chemical Engineering Journal, 2007, 128(2-3): 169–175
https://doi.org/10.1016/j.cej.2006.10.017
6 Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 2008, 325(1): 427–437
https://doi.org/10.1016/j.memsci.2008.08.007
7 Srijaroonrat P, Julien E, Aurelle Y. Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing. Journal of Membrane Science, 1999, 159(1-2): 11–20
https://doi.org/10.1016/S0376-7388(99)00044-7
8 Zhou J E, Chang Q, Wang Y, Wang J, Meng G. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separation and Purification Technology, 2010, 75(3): 243–248
https://doi.org/10.1016/j.seppur.2010.08.008
9 Cui J, Zhang X, Liu H, Liu S, Yeung K L. Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of Membrane Science, 2008, 325(1): 420–426
https://doi.org/10.1016/j.memsci.2008.08.015
10 Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 1998, 151(1): 13–28
https://doi.org/10.1016/S0376-7388(98)00190-2
11 Campos J C, Borges R M H, Filho A M O, Nobrega R, Sant’Anna G L Jr. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 2002, 36(1): 95–104
https://doi.org/10.1016/S0043-1354(01)00203-2
12 Zare M, Ashtiani F Z, Fouladitajar A. CFD modeling and simulation of concentration polarization in microfiltration of oil-water emulsions; Application of an Eulerian multiphase model. Desalination, 2013, 324: 37–47
https://doi.org/10.1016/j.desal.2013.05.022
13 Sun S P, Hatton T A, Chan S Y, Chung T S. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water. Journal of Membrane Science, 2012, 401-402: 152–162
https://doi.org/10.1016/j.memsci.2012.01.046
14 Pan Y, Wang T, Sun H, Wang W. Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Separation and Purification Technology, 2012, 89: 78–83
https://doi.org/10.1016/j.seppur.2012.01.010
15 Montgomery D C. Response Surface Methods and Designs, Design and Analysis of Experiment. 8th ed. New York: John Wiley & Sons, 2013, 478–553
16 Montgomery D C. Response Surface Methods and other Approaches to Process Optimization, Design and Analysis of Experiments. 5th ed. New York: John Wiley & Sons, 2001, 427–510
17 Abadikhah H, Ashtiani F Z, Fouladitajar A. Nanofiltration of oily wastewater containing salt: Experimental studies and optimization using response surface methodology. Desalination and Water Treatment, 2015, 56: 2783–2796
18 Suresh K, Pugazhenthi G. Development of ceramic membranes from low-cost clays for the separation of oil-water emulsion. Desalination and Water Treatment, 2016, 57(5): 1927–1939
https://doi.org/10.1080/19443994.2014.979445
19 Suresh K, Srinu T, Ghoshal A K, Pugazhenthi G. Preparation and characterization of TiO2 and γ-Al2O3 composite membranes for the separation of oil-in-water emulsions. RSC Advances, 2016, 6(6): 4877–4888
https://doi.org/10.1039/C5RA23523E
20 Vasanth D, Pugazhenthi G, Uppaluri R. Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination, 2013, 320: 86–95
https://doi.org/10.1016/j.desal.2013.04.018
21 Aleboyeh A, Daneshvar N, Kasiri M B. Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing: Process Intensification, 2008, 47(5): 827–830
https://doi.org/10.1016/j.cep.2007.01.033
22 Khataee A R, Dehghan G. Optimization of biological treatment of a dye solution by macro algae Cladophora sp. using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 26–33
https://doi.org/10.1016/j.jtice.2010.03.007
23 Liu H L, Chiou Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal, 2005, 112(1-3): 173–179
https://doi.org/10.1016/j.cej.2005.07.012
24 Mittal P, Jana S, Mohanty K. Synthesis of low cost hydrophilic ceramic-polymeric composite membrane for treatment of oily wastewater. Desalination, 2011, 282: 54–62
https://doi.org/10.1016/j.desal.2011.06.071
25 Mueller J, Cen Y, Davis R H. Cross flow microfiltration of oily water. Journal of Membrane Science, 1997, 129(2): 221–235
https://doi.org/10.1016/S0376-7388(96)00344-4
26 Jonsson A S, Tragardh G. Ultrafiltration applications. Desalination, 1990, 77(1-3): 135–179
https://doi.org/10.1016/0011-9164(90)80008-Y
27 Zhu L, Chen M, Dong Y, Tang C Y, Huang A, Li L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Research, 2016, 90: 277–285
https://doi.org/10.1016/j.watres.2015.12.035
28 Sriharsha E, Uppaluri R, Purkait M K. Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes. Desalination, 2014, 341: 61–71
https://doi.org/10.1016/j.desal.2014.02.030
29 Li H J, Cao Y M, Qin J J, Jie X M, Wang T H, Liu J H, Yuan Q. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation. Journal of Membrane Science, 2006, 279(1-2): 328–335
https://doi.org/10.1016/j.memsci.2005.12.025
30 Chang Q, Zhou J E, Wang Y, Liang J, Zhang X, Cerneaux S, Wang X, Zhu Z, Dong Y. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. Journal of Membrane Science, 2014, 456: 128–133
https://doi.org/10.1016/j.memsci.2014.01.029
31 Salahi A, Noshadi I, Badrnezhad R, Kanjilal B, Mohammadi T. Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology. Journal of Environmental Chemical Engineering, 2013, 1(3): 218–225
https://doi.org/10.1016/j.jece.2013.04.021
32 Wang P, Xu N, Shi J. A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes. Journal of Membrane Science, 2000, 173(2): 159–166
https://doi.org/10.1016/S0376-7388(00)00372-0
33 Jokic A, Zavargo Z, Zeres Z, Tekic M. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach. Journal of Membrane Science, 2010, 350(1-2): 269–278
https://doi.org/10.1016/j.memsci.2009.12.037
[1] Petro Kapustenko, Jiří J. Klemeš, Olga Arsenyeva, Olexandr Matsegora, Oleksandr Vasilenko. Accounting for local features of fouling formation on PHE heat transfer surface[J]. Front. Chem. Sci. Eng., 2018, 12(4): 619-629.
[2] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[3] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed