Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 448-464    https://doi.org/10.1007/s11705-017-1611-9
REVIEW ARTICLE
Recent advances in SERS detection of perchlorate
Jumin Hao1,2, Xiaoguang Meng1()
1. Center for Environmental Systems, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
2. NovelTech JMC Inc., 409 Minnisink Road Suite 208, Totowa, NJ 07512, USA
 Download: PDF(680 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Perchlorate has recently emerged as a widespread environmental contaminant of healthy concern. Development of novel detection methods for perchlorate with the potential for field use has been an urgent need. The investigation has shown that surface-enhanced Raman scattering (SERS) technique has great potential to become a practical analysis tool for the rapid screening and routine monitoring of perchlorate in the field, particularly when coupled with portable/handheld Raman spectrometers. In this review article, we summarize progress made in SERS analysis of perchlorate in water and other media with an emphasis on the development of SERS substrates for perchlorate detection. The potential of this technique for fast screening and field testing of perchlorate-contaminated environmental samples is discussed. The challenges and possible solutions are also addressed, aiming to provide a better understanding on the development directions in the research field.

Keywords perchlorate      SERS      detection      substrate      modification      nanostructure     
Corresponding Author(s): Xiaoguang Meng   
Online First Date: 09 January 2017    Issue Date: 23 August 2017
 Cite this article:   
Jumin Hao,Xiaoguang Meng. Recent advances in SERS detection of perchlorate[J]. Front. Chem. Sci. Eng., 2017, 11(3): 448-464.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1611-9
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/448
Fig.1  Schematic of SERS phenomenon for an analyte on AuNPs [33]. Reproduced with permission from The Royal Society of Chemistry
Fig.2  Scheme 1&chsp;?Illustratration of the types and fabrication routes of the significant SERS substrates used for perchlorate SERS detection, as well as the sampling methods for water samples prior to SERS measurements corresponding to the substrates types. It also shows the advantages and disadvantages for convenient comparison among them
Fig.3  Typical SERS spectra of (a) AgNPs/Cu nanofilm (background), (b) ClO4 at 104ppb on AgNPs/Cu nanofilm, and (c) normal Raman spectrum of 107ppb perchlorate aqueous solution [22]. Adapted with permission from Elsevier B.V.
SERS substrate Modification reagent and cationic group Sampling method Laser
l /nm
SERS peak /cm −1 LOD /ppb Ref.
Roughened Ag electrode Various cationic thiols:
–NH3+, –NH+ (CH3)2, etc.
Flow Cell 785 935 5000 a) [ 18]
AgNPs
(colloid)
No modification Mix-Drop-Dry 785 941 500 [ 19]
AuNPs
(colloid)
Cystamine dihydrochloride (CYD): –NH 3+ Mix-Drop-Dry 785 929–931 500 [ 20]
AuNPs/SiO 2
(colloid)
Various silane reagents:
–NH3+, –NH+ (CH3)2, etc.
Mix-Drop-Dry 785 929–931 100 [ 13]
AuNPs
(colloid)
2-Dimethylaminoethanethiol hydrochloride (DMAH):
–NH+ (CH3)2
Mix-Drop-Dry 785 934 0.1 [ 14]
AuNPs
(colloid)
Poly(diallyldimethylammonium chloride) (PDDA):>N + (CH3)2 Mix-Drop-Dry 785 931 25 [ 25]
AgNPs/Glass or AgNPs/Capillary
(solid)
Various silane reagents:
–NH3+, –NH+ (CH3)2, etc.
Drop b)
Flow Cell c)
785 930–932 100 b)300 c) [ 9]
AgNPs/Glass
(solid)
Branched polyethyleneimine
(BPEI): –NH3+
Drop 532 928 8 [ 21]
AgNPs/Cu foil
(solid)
No modification Drop-Dry 780 930 50 [ 22]
AgNPs/rCu foil
(solid)
Cysteamine hydrochloride (CYH): –NH 3+ Drop 780 930 5
1000 d)
[ 23, 24]
AgNPs/Fe 3O4/Support/Megnet (solid) 2-Dimethylaminoethanethiol hydrochloride (DMAH):
–NH+ (CH3)2
Flow Cell 785 923 5000 a) [ 15]
Ag nanoplate/Cu wire
(solid)
Sodium diethyldithiocarb- amate (DDTC): =N + (C2H5) Dip 785 932 6 e)
81f)
[ 27]
AgNRs/Si wafer
(solid)
No modification Transfer-Drop-Dry 785 934 N/A g) [ 28]
Tab.1  Summary of significant advances in the perchlorate SERS detection reported in the literature
Fig.4  Illustration of the interactions between perchlorate and protonated or deprotonated cystamine-modified gold nanoparticles under both acidic and alkaline pH conditions [20]. Reproduced with permission from Elsevier B.V.
Fig.5  (a) SERS detection of ClO4 at various concentrations using CYD-modified AuNPs at pH 2; (b) ClO4 peak intensity at ~930 cm1as a function of the concentration [20]. Reproduced with permission from Elsevier B.V.
Fig.6  SEM image of adsorbed AuNPs on SiO2 nanospheres modified mixed –N+(CH3)3 and –NH2. The scale at the bottom 1 μm [13]. Reproduced with permission from Elsevier B.V.
Fig.7  (a) Photo of the flow cell used to evaluate the SERS response of capture matrices (DMAH-modified AgNPs/Fe3O4magnetic microparticles) to perchlorate. Top-left inset shows a schematic illustration of a DMAH-modified AgNPs/Fe3O4magnetic microparticle and the capture of perchlorate ion; Top-right inset shows SERS spectra obtained in the flow cell system; (b) schematics of the flow cell showing the structure [15]. Adapted with permission from Elsevier B.V.
Fig.8  (a) SERS spectra of ClO4on the DMAH-modified AgNPs/Fe3O4capture matrices in the flow cell measured as a function of total volume of 5 ppm perchlorate solution flowing through the cell at a constant rate; (b) plot of perchlorate peak area as a function of volume of 5 ppm perchlorate solution. The mass quantity of perchlorate that flowed over the capture matrices is indicated [15]. Adapted with permission from Elsevier B.V.
Fig.9  Schematic illustration of preparation of the SERS substrate CYH-AgNF/rCu by a galvanic replacement reaction followed by CYH modification [23]. Reproduced with permission from Elsevier B.V.
Fig.10  SERS spectra of (a) the regenerated CYH-AgNF/rCu substrates and (b) 3 ppm perchlorate solutions on the regenerated substrates at different regeneration cycles (from bottom to up) of 1, 2, 4, 7, and 10 cycles [23]. Reproduced with permission from Elsevier B.V.
Fig.11  (a) The FE-SEM image of the fabricated SERS substrate. SERS spectra of (b) the water-dissolved explosives, after the oil-, organic-, and wax-based extraction with pentane, and (c) the water-dissolved explosives, after burned in the open flame [28]. Addopted with permission from Elsevier B.V.
Fig.12  Schematic of the process of microextraction and determination of perchlorate using DDTC-modified Ag/Cu fiber [27]. Reproduced with permission from The Royal Society of Chemistry
64 Bhandari D, Wells  S M, Retterer  S T, Sepaniak  M J. Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy. Analytical Chemistry, 2009, 81(19): 8061–8067
https://doi.org/10.1021/ac901266f
65 Li J, Chen  L, Lou T ,  Wang Y. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Applied Materials & Interfaces, 2011, 3(10): 3936–3941
https://doi.org/10.1021/am200810x
66 Xiao J, Meng  Y Y, Zhang  P L, Wen  W, Liu Z M ,  Zhang T . Quantitative analysis of chromate (CrVI) by normal Raman spectroscopy and surface-enhanced Raman spectroscopy using poly(diallyldimethylammonium) chloride-capped gold nanoparticles. Laser Physics, 2012, 22(10): 1481–1488
https://doi.org/10.1134/S1054660X12100258
67 Zhou W, Yin  B C, Ye  B C. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate. Biosensors & Bioelectronics, 2017, 87: 187–194
https://doi.org/10.1016/j.bios.2016.08.036
68 Mosier-Boss P A ,  Putnam M D . Detection of hexavalent chromium using gold/4-(2-mercaptoethyl) pyridinium surface enhanced Raman scattering-active capture matrices. Analytica Chimica Acta, 2013, 801: 70–77
https://doi.org/10.1016/j.aca.2013.09.006
69 Mosier-Boss P A ,  Putnam M D . The evaluation of two commercially available, portable Raman systems. Analytical Chemistry Insights. Analytical Chemistry Insights, 2013, 8: 83–97
https://doi.org/10.4137/ACI.S11870
70 Dieringer J A ,  McFarland A D ,  Shah N C ,  Stuart D A ,  Whitney A V ,  Yonzon C R ,  Young M A ,  Zhang X ,  Van Duyne R P . Introductory lecture surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discussions, 2006, 132: 9–26
https://doi.org/10.1039/B513431P
1 Wang C, Lippincott  L, Yoon I H ,  Meng X. Modeling, rate-limiting step investigation, and enhancement of the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Research, 2009, 43(1): 127–136
https://doi.org/10.1016/j.watres.2008.10.012
71 Jia S, Li  D, Fodjo E K ,  Xu H, Deng  W, Wu Y ,  Wang Y. Simultaneous preconcentration and ultrasensitive on-site SERS detection of polycyclic aromatic hydrocarbons in seawater using hexanethiol-modified silver decorated graphene nanomaterials. Analytical Methods, 2016, 8(42): 7587–7596
https://doi.org/10.1039/C6AY02293F
72 Gao P, Patterson  M L, Tadayyoni  M A, Weaver  M J. Gold as a ubiquitous substrate for intense surface-enhanced Raman scattering. Langmuir, 1985, 1(1): 173–176
https://doi.org/10.1021/la00061a032
73 Niaura G, Malinauskas  A. Surface-enhanced Raman spectroscopy of ClO4− and SO42– anions adsorbed at a Cu electrode. Journal of the Chemical Society, Faraday Transactions, 1998, 94(15): 2205–2211 
https://doi.org/10.1039/a800574e
74 Kania S, Holze  R. Surface enhanced Raman spectroscopy of anions adsorbed on foreign metal modified gold electrodes. Surface Science, 1998, 408(1-3): 252–259
https://doi.org/10.1016/S0039-6028(98)00248-9
75 Sant’Ana A C ,  Alves W A ,  Santos R H A ,  Ferreira A M D ,  Temperini M L A . The adsorption of 2,2′:6′,2′'-terpyridine, 4′-(5-mercaptopentyl)-2,2′:6′,2′'-terpyridinyl, and perchlorate on silver and copper surfaces monitored by SERS. Polyhedron, 2003, 22(13): 1673–1682
https://doi.org/10.1016/S0277-5387(03)00325-5
2 Renner R. U.S . Focus. Perchlorate rockets to US national attention. Journal of Environmental Monitoring, 1999, 1(3): 37N–38N
https://doi.org/10.1039/a903470f
3 Yoon I H, Meng  X, Wang C ,  Kim K W ,  Bang S, Choe  E, Lippincott L . Perchlorate adsorption and desorption on activated carbon and anion exchange resin. Journal of Hazardous Materials, 2009, 164(1): 87–94
https://doi.org/10.1016/j.jhazmat.2008.07.123
76 Holze R. Preparation of gold electrodes for surface enhanced Raman spectroscopy SERS. Surface Science, 1988, 202(3): L612–L620
https://doi.org/10.1016/0039-6028(88)90039-8
77 Mosier-Boss P A ,  Lieberman S H . Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy, 2000, 54(8): 1126–1135
https://doi.org/10.1366/0003702001950922
78 Zhou Q, Kim  T. Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors and Actuators. B, Chemical, 2016, 227: 504–514
https://doi.org/10.1016/j.snb.2015.12.069
79 Yogarajah N, Tsai  S S H. Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics. Environmental Science: Water Research & Technology, 2015, 1(4): 426–447
80 Parisi J, Dong  Q, Lei Y . In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing. RSC Advances, 2015, 5(19): 14081–14089
https://doi.org/10.1039/C4RA15174G
4 Perchlorate: occurrence is widespread but at varying levels; Federal agencies have taken some actions to respond to and lessen releases. Washington: United States Government Accountability Office, 2010
5 Dasgupta P K. Perchlorate: An enigma for the new millennium. Analytica Chimica Acta, 2006, 567(1): 1–3
https://doi.org/10.1016/j.aca.2006.03.061
6 Wang C, Lippincott  L, Meng X . Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Research, 2008, 42(18): 4619–4628
https://doi.org/10.1016/j.watres.2008.08.013
7 Kirk A B. Environmental perchlorate: Why it matters. Analytica Chimica Acta, 2006, 567(1): 4–12
https://doi.org/10.1016/j.aca.2006.03.047
8 Baier-Anderson C. Risk assessment, remedial decisions and the challenge to protect public health: The perchlorate case study. Analytica Chimica Acta, 2006, 567(1): 13–19
https://doi.org/10.1016/j.aca.2006.02.047
9 Wang W, Gu  B. New surface-enhanced Raman spectroscopy substrates via self-Assembly of silver nanoparticles for perchlorate detection in water. Applied Spectroscopy, 2005, 59(12): 1509–1515
https://doi.org/10.1366/000370205775142458
10 Mosier-Boss P A . Use of Raman spectroscopy to evaluate the selectivity of bifunctional anion exchange resins for perchlorate. Applied Spectroscopy, 2008, 62(2): 157–165
https://doi.org/10.1366/000370208783575447
11 Kumarathilaka P, Oze  C, Indraratne S P ,  Vithanage M . Perchlorate as an emerging contaminant in soil, water and food. Chemosphere, 2016, 150: 667–677
https://doi.org/10.1016/j.chemosphere.2016.01.109
12 Public health goal for perchlorate in drinking water. Pesticide and environmental toxicology branch. California: Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 2015
13 Wang W, Ruan  C, Gu B . Development of gold–silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2006, 567(1): 121–126
https://doi.org/10.1016/j.aca.2006.01.083
14 Gu B, Ruan  C, Wang W . Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering. Applied Spectroscopy, 2009, 63(1): 98–102
https://doi.org/10.1366/000370209787169894
15 Mosier-Boss P A ,  Putnam M D . Detection of perchlorate using Ag/DMAH+ SERS-active capture matrices. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 133: 156–164
https://doi.org/10.1016/j.saa.2014.05.036
16 Sharma B, Frontiera  R R, Henry  A I, Ringe  E, Van Duyne R P . SERS: Materials, applications, and the future. Materials Today, 2012, 15(1-2): 16–25
https://doi.org/10.1016/S1369-7021(12)70017-2
17 Cheng H W, Luo  J, Zhong C J . SERS nanoprobes for bio-application. Frontiers of Chemical Science and Engineering, 2015, 9(4): 428–441
https://doi.org/10.1007/s11705-015-1536-0
18 Mosier-Boss P A ,  Lieberman S H . Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates. Applied Spectroscopy, 2003, 57(9): 1129–1137
https://doi.org/10.1366/00037020360695991
19 Gu B, Tio  J, Wang W ,  Ku Y K ,  Dai S. Raman spectroscopic detection for perchlorate at low concentrations. Applied Spectroscopy, 2004, 58(6): 741–744
https://doi.org/10.1366/000370204872890
20 Ruan C, Wang  W, Gu B . Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Analytica Chimica Acta, 2006, 567(1): 114–120
https://doi.org/10.1016/j.aca.2006.01.097
21 Tan S, Erol  M, Sukhishvili S ,  Du H. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. Langmuir, 2008, 24(9): 4765–4771
https://doi.org/10.1021/la703831q
22 Hao J, Xu  Z, Han M J ,  Xu S, Meng  X. Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 366(1-3): 163–169
https://doi.org/10.1016/j.colsurfa.2010.06.010
23 Hao J, Han  M J, Li  J, Meng X . Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2012, 377(1): 51–57
https://doi.org/10.1016/j.jcis.2012.03.036
24 Hao J, Han  M J, Meng  X, Weimer W ,  Wang Q K . Surface-enhanced Raman scattering of perchlorate on cationic-modified silver nanofilms—effect of inorganic anions. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 136(Part C): 1593–1599
https://doi.org/10.1016/j.saa.2014.10.052
25 Xiao J, Zhang  T, Li R ,  Meng Y, Wen  W. Surface-enhanced Raman scattering for quantitative analysis of perchlorate using poly(diallyldimethylammonium chloride) capped gold nanoparticles. Applied Spectroscopy, 2012, 66(9): 1027–1033
https://doi.org/10.1366/12-06645
26 Stewart A, Murray  S, Bell S E J . Simple preparation of positively charged silver nanoparticles for detection of anions by surface-enhanced Raman spectroscopy. Analyst (London), 2015, 140(9): 2988–2994
https://doi.org/10.1039/C4AN02305F
27 Zhu S, Zhang  X, Cui J ,  Shi Y, Jiang  X, Liu Z ,  Zhan J. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst (London), 2015, 140(8): 2815–2822
https://doi.org/10.1039/C4AN02109F
28 Nuntawong N, Eiamchai  P, Limwichean S ,  Wong-ek B ,  Horprathum M ,  Patthanasettakul V ,  Leelapojanaporn A ,  Nakngoenthong S ,  Chindaudom P . Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Science International, 2013, 233(1-3): 174–178
https://doi.org/10.1016/j.forsciint.2013.09.012
29 Kneipp K, Kneipp  H, Itzkan I ,  Dasari R R ,  Feld M S . Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10): 2957–2976
https://doi.org/10.1021/cr980133r
30 Halvorson R A ,  Vikesland P J . Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology, 2010, 44(20): 7749–7755
https://doi.org/10.1021/es101228z
31 Baker G A, Moore  D S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry, 2005, 382(8): 1751–1770
https://doi.org/10.1007/s00216-005-3353-7
32 Kneipp K, Kneipp  H, Itzkan I ,  Dasari R R ,  Feld M S . Surface-enhanced Raman scattering and biophysics. Journal of Physics Condensed Matter, 2002, 14(18): R597
https://doi.org/10.1088/0953-8984/14/18/202
33 Wei H, Hossein Abtahi  S M, Vikesland  P J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science. Nano, 2015, 2(2): 120–135
https://doi.org/10.1039/C4EN00211C
34 Alvarez-Puebla R A ,  Liz-Marzán L M . SERS detection of small inorganic molecules and ions. Angewandte Chemie International Edition, 2012, 51(45): 11214–11223
https://doi.org/10.1002/anie.201204438
35 Kneipp K, Wang  Y, Kneipp H ,  Perelman L T ,  Itzkan I ,  Dasari R R ,  Feld M S . Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667–1670
https://doi.org/10.1103/PhysRevLett.78.1667
36 Nie S, Emory  S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106
https://doi.org/10.1126/science.275.5303.1102
37 Mulvihill M, Tao  A, Benjauthrit K ,  Arnold J ,  Yang P. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angewandte Chemie International Edition, 2008, 47(34): 6456–6460
https://doi.org/10.1002/anie.200800776
38 Han M J, Hao  J, Xu Z ,  Meng X. Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Analytica Chimica Acta, 2011, 692(1-2): 96–102
https://doi.org/10.1016/j.aca.2011.02.054
39 Xu Z, Hao  J, Li F ,  Meng X. Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction. Journal of Colloid and Interface Science, 2010, 347(1): 90–95
https://doi.org/10.1016/j.jcis.2010.03.028
40 Jia S, Li  D, Fodjo E K ,  Xu H, Deng  W, Wu Y ,  Wang Y. Simultaneous preconcentration and ultrasensitive on-site SERS detection of polycyclic aromatic hydrocarbons in seawater using hexanethiol-modified silver decorated graphene nanomaterials. Analytical Methods, 2016, 8(42): 7587–7596
https://doi.org/10.1039/C6AY02293F
41 Zhang Y, Wang  Z, Wu L ,  Pei Y, Chen  P, Cui Y . Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst (London), 2014, 139(20): 5148–5154
https://doi.org/10.1039/C4AN00771A
42 Alvarez-Puebla R A ,  Liz-Marzan L M . Environmental applications of plasmon assisted Raman scattering. Energy & Environmental Science, 2010, 3(8): 1011–1017
https://doi.org/10.1039/c002437f
43 Fan M, Andrade  G F S, Brolo  A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1-2): 7–25
https://doi.org/10.1016/j.aca.2011.03.002
44 Sharma B, Fernanda Cardinal  M, Kleinman S L ,  Greeneltch N G ,  Frontiera R R ,  Blaber M G ,  Schatz G C ,  Van Duyne R P . High-performance SERS substrates: Advances and challenges. MRS Bulletin, 2013, 38(8): 615–624
https://doi.org/10.1557/mrs.2013.161
45 Li D W, Zhai  W L, Li  Y T, Long  Y T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochimica Acta, 2014, 181(1-2): 23–43
https://doi.org/10.1007/s00604-013-1115-3
46 Hao J, Han  M J, Xu  Z, Li J ,  Meng X. Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate. Nanoscale Research Letters, 2011, 6(1): 263
https://doi.org/10.1186/1556-276X-6-263
47 Chen C, Hao  J, Zhu L ,  Yao Y, Meng  X, Weimer W ,  Wang Q K . Direct two-phase interfacial self-assembly of aligned silver nanowire films for surface enhanced Raman scattering applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(43): 13496–13501
https://doi.org/10.1039/c3ta12065a
48 Du J, Cui  J, Jing C . Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chemical Communications, 2014, 50(3): 347–349
https://doi.org/10.1039/C3CC46920D
49 Fateixa S, Nogueira  H I S, Trindade  T. Hybrid nanostructures for SERS: Materials development and chemical detection. Physical Chemistry Chemical Physics, 2015, 17(33): 21046–21071
https://doi.org/10.1039/C5CP01032B
50 Chen M C, Tsai  S D, Chen  M R, Ou  S Y, Li  W H, Lee  K C. Effect of silver-nanoparticle aggregation on surface-enhanced Raman scattering from benzoic acid. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(7): 4507–4515
https://doi.org/10.1103/PhysRevB.51.4507
51 Dou X, Jung  Y M, Cao  Z Q, Ozaki  Y. Surface-enhanced Raman scattering of biological molecules on metal colloid II: Effects of aggregation of gold colloid and comparison of effects of pH of glycine solutions between gold and silver colloids. Applied Spectroscopy, 1999, 53(11): 1440–1447
https://doi.org/10.1366/0003702991945803
52 Zou X, Dong  S. Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. Journal of Physical Chemistry B, 2006, 110(43): 21545–21550
https://doi.org/10.1021/jp063630h
53 Tian Z Q, Ren  B, Wu D Y . Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B, 2002, 106(37): 9463–9483
https://doi.org/10.1021/jp0257449
54 Hu J, Zhao  B, Xu W ,  Fan Y, Li  B, Ozaki Y . Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates. Langmuir, 2002, 18(18): 6839–6844
https://doi.org/10.1021/la020151a
55 Sackmann M, Materny  A. Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? Journal of Raman Spectroscopy, 2006, 37(1-3): 305–310
https://doi.org/10.1002/jrs.1443
56 Rajesh D, Mahendar  M, Sunandana C S . Effect of etching on the optical, morphological properties of Ag thin films for SERS active substrates. Journal of Chemistry, 2013, 2013: 285431
57 Zheng J, He  L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317–328
https://doi.org/10.1111/1541-4337.12062
58 Pang S, Yang  T, He L . Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 2016, 85: 73–82
https://doi.org/10.1016/j.trac.2016.06.017
59 Song C, Yang  B, Yang Y ,  Wang L. SERS-based mercury ion detections: Principles, strategies and recent advances. Science China. Chemistry, 2016, 59(1): 16–29
https://doi.org/10.1007/s11426-015-5504-9
60 Shaban M, Galaly  A R. Highly sensitive and selective in-situ SERS detection of Pb2+, Hg2+, and Cd2+ using nanoporous membrane functionalized with CNTs. Scientific Reports, 2016, 6: 25307
https://doi.org/10.1038/srep25307
61 Han D, Lim  S Y, Kim  B J, Piao  L, Chung T D . Mercury(ii) detection by SERS based on a single gold microshell. Chemical Communications, 2010, 46(30): 5587–5589
https://doi.org/10.1039/c0cc00895h
62 Wang Y, Irudayaraj  J. A SERS DNAzyme biosensor for lead ion detection. Chemical Communications, 2011, 47(15): 4394–4396
https://doi.org/10.1039/c0cc04140h
63 Ruan C, Luo  W, Wang W ,  Gu B. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Analytica Chimica Acta, 2007, 605(1): 80–86
https://doi.org/10.1016/j.aca.2007.10.024
[1] Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Front. Chem. Sci. Eng., 2021, 15(1): 35-48.
[2] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[3] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[4] Firat Salman, Hilal C. Kazici, Hilal Kivrak. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages[J]. Front. Chem. Sci. Eng., 2020, 14(4): 629-638.
[5] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[6] Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers[J]. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
[7] Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
[8] Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate[J]. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
[9] Rovshan MAHMUDOV, Chinglung CHEN, Chin-Pao HUANG. Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions[J]. Front. Chem. Sci. Eng., 2015, 9(2): 194-208.
[10] Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
[11] S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles[J]. Front Chem Sci Eng, 2012, 6(1): 112-122.
[12] Dongpo SHI, Hongbing JI, Zhong LI. β-Cyclodextrin promoted oxidation of primary amines to nitriles in water[J]. Front Chem Eng Chin, 2009, 3(2): 196-200.
[13] YANG Qifeng, ZHAN Huaiyu, FU Shiyu, WANG Shuangfei, LI Kecheng. Bio-modification of eucalyptus chemithermomechanical pulp[J]. Front. Chem. Sci. Eng., 2008, 2(1): 28-33.
[14] CHEN Hanjia, SHI Xuhua, ZHU Yafei, ZHANG Yi, XU Jiarui. Synthesis and characterization of macromolecular surface modifier PP--PEG for polypropylene[J]. Front. Chem. Sci. Eng., 2008, 2(1): 102-108.
[15] PENG Xuhui, LE Yuan, BIAN Shuguang, LI Woyuan, WU Wei, DAI Haitao, CHEN Jianfeng. Surface modification of titanium dioxide for electrophoretic particles[J]. Front. Chem. Sci. Eng., 2007, 1(4): 338-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed