Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 509-515     DOI: 10.1007/s11705-017-1613-7
COMMUNICATION |
Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials
Jie Zhou, Xuewen Du, Jiaqing Wang, Natsuko Yamagata, Bing Xu()
Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
 Download: PDF(343 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Enzyme-instructed self-assembly (EISA) offers a facile approach to explore the supramolecular assemblies of small molecules in cellular milieu for a variety of biomedical applications. One of the commonly used enzymes is phosphatase, but the study of the substrates of phosphatases mainly focuses on the phosphotyrosine containing peptides. In this work, we examine the EISA of phosphoserine containing small peptides for the first time by designing and synthesizing a series of precursors containing only phosphoserine or both phosphoserine and phosphotyrosine. Conjugating a phosphoserine to the C-terminal of a well-established self-assembling peptide backbone, (naphthalene-2-ly)-acetyl-diphenylalanine (NapFF), affords a novel hydrogelation precursor for EISA. The incorporation of phosphotyrosine, another substrate of phosphatase, into the resulting precursor, provides one more enzymatic trigger on a single molecule, and meanwhile increases the precursors’ propensity to aggregate after being fully dephosphorylated. Exchanging the positions of phosphorylated serine and tyrosine in the peptide backbone provides insights on how the specific molecular structures influence self-assembling behaviors of small peptides and the subsequent cellular responses. Moreover, the utilization of D-amino acids largely enhances the biostability of the peptides, thus providing a unique soft material for potential biomedical applications.

Keywords enzyme-instructed self-assembly      phosphoserine      phosphatase      supramolecular hydrogel     
Corresponding Authors: Bing Xu   
Online First Date: 12 January 2017    Issue Date: 06 November 2017
 Cite this article:   
Jie Zhou,Xuewen Du,Jiaqing Wang, et al. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front. Chem. Sci. Eng., 2017, 11(4): 509-515.
 URL:  
http://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1613-7
http://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/509
Fig.1  Scheme 1Schematic illustration of EISA of small molecules in water that usually results in supramolecular nanofibers/hydrogels
Fig.2  Chemical structures of the rationally designed precursors containing phosphoserine
Fig.3  Transmission electron microscopy (TEM) images of the aggregates/nanofibers in the solutions of different precursors (L-pS, D-pS, L-pSpY, D-pSpY, L-pYpS, D-pYpS) or nanofibers in the hydrogels formed by treating the solutions of these precursors with alkaline phosphatase (ALP). C= 0.5 wt-%, pH= 7.4, [ALP] = 1 U/mL. Insets are optical images of the solutions of the precursors and the hydrogels formed after the treatment of ALP
Fig.4  Rheological characterization of the six hydrogels fromed by treating the solutions of each of the precursors (0.5 wt-%) with ALP (1 U/mL). The strain dependence of the dynamic storage (G') and loss storage (G") is taken at a frequency equal to 6.28 rad/s, and the frequency dependence is taken at a strain equal to 1.00%
Compounda)L-pSL-pSpYL-pYpSD-pSD-pSpYD-pYpS
In pbs (pH 7.4)SolutionSolutionSolutionSolutionSolutionSolution
+ ALP /(1 U?mL?1)GelGelGelGelGelGel
Storage modulus G'b) /Pa2.312.523.73.416.020.0
Loss modulus G"b) /Pa0.81.82.01.5391.2
Morphology before ALP Treatment (dc) /nm)AggregateAggregateAggregateAggregateAggregateAggregate
Morphology after ALP Treatment (dc) /nm)Nanofiber (24±2)Nanofiber (8±2)Nanofiber (8±2)Nanofiber (24±2)Nanofiber (8±2)Nanofiber (8±2)
Tab.1  Summary of the EISA of the phosphoserine-containing precursors
Fig.5  Digestion curve of all six precursors (500 µmol/L) in the presence of proteinase K (2 U/mL) at 37 °C. The digestion curve was determined on analytical HPLC
Fig.6  48-h cell viability (determined by MTT assay) of HeLa (cancer) and HS-5 (stromal) cells, incubated with six precursors at the concentrations of 100, 200, 300, 400 and 500 µmol/L in cell growth medium. The initial cell numbers are 1 × 104 cells/well
1 Strobel S A, Cochrane J C. Rna catalysis: Ribozymes, ribosomes, and riboswitches. Current Opinion in Chemical Biology, 2007, 11(6): 636–643
doi: 10.1016/j.cbpa.2007.09.010
2 Green D R, Reed J C. Mitochondria and apoptosis. Science, 1998, 281(5381): 1309–1312
doi: 10.1126/science.281.5381.1309
3 Hershko A, Ciechanover A. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425–479
doi: 10.1146/annurev.biochem.67.1.425
4 Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991): 237–242
doi: 10.1038/312237a0
5 Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698): 665–667
doi: 10.1038/277665a0
6 Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53(1): 1–206
doi: 10.1016/j.pmatsci.2007.05.002
7 Kirschner M, Mitchison T. Beyond self-assembly—from microtubules to morphogenesis. Cell, 1986, 45(3): 329–342
doi: 10.1016/0092-8674(86)90318-1
8 Korn E D, Carlier M F, Pantaloni D. Actin polymerization and Atp hydrolysis. Science, 1987, 238(4827): 638–644
doi: 10.1126/science.3672117
9 Whitesides G M. Bioinspiration: Something for everyone. Interface Focus, 2015, 5(4): 20150031
doi: 10.1098/rsfs.2015.0031
10 Gao Y, Shi J, Yuan D, Xu B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nature Communications, 2012, 3: 1033
doi: 10.1038/ncomms2040
11 Li J, Kuang Y, Shi J, Gao Y, Zhou J, Xu B. The conjugation of nonsteroidal anti-inflammatory drugs (Nsaid) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9: 908–917
doi: 10.3762/bjoc.9.104
12 Thornton K, Smith A M, Merry C L R, Ulijn R V. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37(4): 660–664
doi: 10.1042/BST0370660
13 Wang W, Qian J, Tang A, An L, Zhong K, Liang G. Using magnetic resonance imaging to study enzymatic hydrogelation. Analytical Chemistry, 2014, 86(12): 5955–5961
doi: 10.1021/ac500967x
14 Yang Z, Ho P L, Liang G, Chow K H, Wang Q, Cao Y, Guo Z, Xu B. Using beta-L-actamase to trigger supramolecular hydrogelation. Journal of the American Chemical Society, 2007, 129(2): 266–267
doi: 10.1021/ja0675604
15 Guilbaud J B, Vey E, Boothroyd S, Smith A M, Ulijn R V, Saiani A, Miller A F. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides. Langmuir, 2010, 26(13): 11297–11303
doi: 10.1021/la100623y
16 Das A K, Collins R, Ulijn R V. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small, 2008, 4(2): 279–287
doi: 10.1002/smll.200700889
17 Williams R J, Gardiner J, Sorensen A B, Marchesan S, Mulder R J, McLean K M, Hartley P G. Monitoring the early stage self-assembly of enzyme-assisted peptide hydrogels. Australian Journal of Chemistry, 2013, 66(5): 572–578
18 Toledano S, Williams R J, Jayawarna V, Ulijn R V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. Journal of the American Chemical Society, 2006, 128(4): 1070–1071
doi: 10.1021/ja056549l
19 Yang Z, Ma M, Xu B. Using matrix metalloprotease-9 (Mmp-9) to trigger supramolecular hydrogelation. Soft Matter, 2009, 5(13): 2546–2548
20 Bremmer S C, McNeil A J, Soellner M B. Enzyme-triggered gelation: Targeting proteases with internal cleavage sites. Chemical Communications, 2014, 50(14): 1691–1693
doi: 10.1039/c3cc48132h
21 Kalafatovic D, Nobis M, Son J, Anderson K I, Ulijn R V. Mmp-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials, 2016, 98: 192–202
doi: 10.1016/j.biomaterials.2016.04.039
22 Qin X, Xie W, Tian S, Cai J, Yuan H, Yu Z, Butterfoss G L, Khuong A C, Gross R A. Enzyme-triggered hydrogelation via self-assembly of alternating peptides. Chemical Communications, 2013, 49(42): 4839–4841
doi: 10.1039/c3cc41794h
23 Bremmer S C, Chen J, McNeil A J, Soellner M B. A General method for detecting protease activity via gelation and its application to artificial clotting. Chemical Communications, 2012, 48(44): 5482–5484
doi: 10.1039/c2cc31537h
24 Song F, Zhang L M. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. Journal of Physical Chemistry B, 2008, 112(44): 13749–13755
doi: 10.1021/jp8041389
25 Choi Y C, Choi J S, Jung Y J, Cho Y W. Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of dopa and Fe3+ ion crosslinking. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(2): 201–209
doi: 10.1039/C3TB20696C
26 Zhou R, Kuang Y, Zhou J, Du X W, Li J, Shi J F, Haburcak R, Xu B. Nanonets collect cancer secretome from pericellular space. PLoS One, 2016, 11(4): e0154126
doi: 10.1371/journal.pone.0154126
27 Zhou J, Xu B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjugate Chemistry, 2015, 26(6): 987–999
doi: 10.1021/acs.bioconjchem.5b00196
28 Zhou J, Du X W, Yamagata N, Xu B. Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells. Journal of the American Chemical Society, 2016, 138(11): 3813–3823
doi: 10.1021/jacs.5b13541
29 Zhou J, Du X W, Xu B. Regulating the rate of molecular self-assembly for targeting cancer cells. Angewandte Chemie International Edition, 2016, 55(19): 5770–5775
doi: 10.1002/anie.201600753
30 Shi J F, Du X W, Yuan D, Zhou J, Zhou N, Huang Y B, Xu B. D-Amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules, 2014, 15(10): 3559–3568
doi: 10.1021/bm5010355
31 Wang H, Feng Z, Wu D, Fritzsching K J, Rigney M, Zhou J, Jiang Y, Schmidt-Rohr K, Xu B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. Journal of the American Chemical Society, 2016, 138(34): 10758–10761
doi: 10.1021/jacs.6b06075
32 Du X W, Zhou J, Xu B. Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. Journal of Colloid and Interface Science, 2015, 447: 273–277
doi: 10.1016/j.jcis.2014.12.023
33 Pires R A, Abul-Haija Y M, Costa D S, Novoa-Carballal R, Reis R L, Ulijn R V, Pashkuleva I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. Journal of the American Chemical Society, 2015, 137(2): 576–579
doi: 10.1021/ja5111893
34 Lv L, Liu H, Chen X, Yang Z. Glutathione-triggered formation of molecular hydrogels for 3d cell culture. Colloids and Surfaces. B, Biointerfaces, 2013, 108: 352–357
doi: 10.1016/j.colsurfb.2013.03.013
35 Wang H M, Yang Z M. Short-peptide-based molecular hydrogels: Novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale, 2012, 4(17): 5259–5267
doi: 10.1039/c2nr31149f
36 Cai Y, Shi Y, Wang H, Wang J, Ding D, Wang L, Yang Z. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications. Analytical Chemistry, 2014, 86(4): 2193–2199
doi: 10.1021/ac4038653
37 Wang H, Luo Z, Wang Y, He T, Yang C, Ren C, Ma L, Gong C, Li X, Yang Z. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Advanced Functional Materials, 2016, 26(11): 1822–1829
doi: 10.1002/adfm.201505188
38 Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, Liu W, Zheng W, Zhao Y, Kong D, Yang Z, Zhang W, Shao Y, Jiang X. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of Hiv vaccine. Nano Letters, 2014, 14(3): 1439–1445
doi: 10.1021/nl404560v
39 Sargeant T D, Aparicio C, Goldberger J E, Cui H G, Stupp S I. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8(7): 2456–2465
doi: 10.1016/j.actbio.2012.03.026
40 Zhang Y, Kuang Y, Gao Y A, Xu B. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir, 2011, 27(2): 529–537
doi: 10.1021/la1020324
41 Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Accounts of Chemical Research, 2008, 41(2): 315–326
doi: 10.1021/ar7001914
42 Cui H, Cheetham A G, Pashuck E T, Stupp S I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. Journal of the American Chemical Society, 2014, 136(35): 12461–12468
doi: 10.1021/ja507051w
43 Cui H, Muraoka T, Cheetham A G, Stupp S I. Self-assembly of giant peptide nanobelts. Nano Letters, 2009, 9(3): 945–951
doi: 10.1021/nl802813f
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed