Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 624-632    https://doi.org/10.1007/s11705-017-1614-6
REVIEW ARTICLE
Engineering platelet-mimicking drug delivery vehicles
Quanyin Hu1,2, Hunter N. Bomba1,2, Zhen Gu1,2,3()
1. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA
2. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
3. Department of Medicine, University of North Carolina School of Medicine, NC 27599, USA
 Download: PDF(522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Platelets dynamically participate in various physiological processes, including wound repair, bacterial clearance, immune response, and tumor metastasis. Recreating the specific biological features of platelets by mimicking the structure of the platelet or translocating the platelet membrane to synthetic particles holds great promise in disease treatment. This review highlights recent advancements made in the platelet-mimicking strategies. The future opportunities and translational challenges are also discussed.

Keywords drug delivery      platelets      nanomedicine      bio-inspired      biomimetic     
Corresponding Author(s): Zhen Gu   
Online First Date: 15 February 2017    Issue Date: 06 November 2017
 Cite this article:   
Quanyin Hu,Hunter N. Bomba,Zhen Gu. Engineering platelet-mimicking drug delivery vehicles[J]. Front. Chem. Sci. Eng., 2017, 11(4): 624-632.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1614-6
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/624
Fig.1  Different strategies of platelet-mimicking drug delivery system. (A) Platelet structure-mimicry includes discoid shape and spiny surface mimicking; (B) platelet membrane is purified and coated on the surface of polymeric nanoparticle
Fig.2  Schematic illustration of fabrication process of nanohair decorated microspheres. Reprinted with permission from Ref. 29
Fig.3  (A) The structure of deformable platelet-like particle with H6 sdFvs; (B) AFM images of inactive PLP and shape-changed PLP. Reprinted with permission of [33]; (C) The fabrication process of platelet-like particle decorated with collagen-binding peptide, the von Willebrand Factor binding peptide, and the linear fibrinogen-mimetic peptide. Reprinted with permission from Ref. 35
Fig.4  Schematic representation of the development of platelet mimicking particle. (A) The main component of plate-like particles; (B) the fabrication process of the synthetic platelet-like particle; (C) the SEM images of polymeric particles, synthetic platelet-mimicking particle, and natural platelet (from left to right). Reprinted with permission from Ref. 34
Fig.5  Schematic of design of drug-loaded PM-NV for targeting and sequential delivery of TRAIL and Dox. Reprinted with permission from Ref. 48
Fig.6  Schematic illustration of the platelet membrane-coated silica particles. Reprinted with permission of [53]
Fig.7  Schematic illustration of tPA-conjugated, Ald-functionalized and bortezomib-loaded PM-NP for MM and thrombus treatment. (A) The structure of tPA-Ald-PM-NP; (B) Sequentially targeting of tPA-Ald-PM-NP to bone microenvironment and MM cells; (C) Targeting and dissolution of thrombus. Reprinted with permission of [54]
Fig.8  Schematic design of the platelet membrane-cloaked nanoparticles for immunocompatibility, subendothelium binding, and pathogen adhesion. Reprinted with permission from Ref. 56
1 Rondina M T, Weyrich A S, Zimmerman G A. Platelets as cellular effectors of inflammation in vascular diseases. Circulation Research, 2013, 112(11): 1506–1519
https://doi.org/10.1161/CIRCRESAHA.113.300512
2 Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap M P, Simon M I, Gawaz M, Offermanns S. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9(11): 1418–1422
https://doi.org/10.1038/nm943
3 Semple J W, Italiano J E, Freedman J. Platelets and the immune continuum. Nature Reviews. Immunology, 2011, 11(4): 264–274
https://doi.org/10.1038/nri2956
4 Davì G, Patrono C. Platelet activation and atherothrombosis. New England Journal of Medicine, 2007, 357(24): 2482–2494
https://doi.org/10.1056/NEJMra071014
5 Gay L J, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 2011, 11(2): 123–134
https://doi.org/10.1038/nrc3004
6 Karpatkin S, Pearlstein E, Ambrogio C, Coller B. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 1988, 81(4): 1012–1019
https://doi.org/10.1172/JCI113411
7 Borsig L, Wong R, Feramisco J, Nadeau D R, Varki N M, Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(6): 3352–3357
https://doi.org/10.1073/pnas.061615598
8 Jurasz P, Alonso-Escolano D, Radomski M W. Platelet-cancer interactions: Mechanisms and pharmacology of tumour cell—induced platelet aggregation. British Journal of Pharmacology, 2004, 143(7): 819–826
https://doi.org/10.1038/sj.bjp.0706013
9 Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
https://doi.org/10.1586/14737140.8.8.1247
10 Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
https://doi.org/10.1021/nn900002m
11 Farokhzad O C, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 2006, 58(14): 1456–1459
https://doi.org/10.1016/j.addr.2006.09.011
12 Langer R. Drug delivery and targeting. Nature, 1998, 392(6679 Suppl): 5–10
13 Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760
https://doi.org/10.1038/nnano.2007.387
14 Shi J, Votruba A R, Farokhzad O C, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 2010, 10(9): 3223–3230
https://doi.org/10.1021/nl102184c
15 Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1(5): 16014
https://doi.org/10.1038/natrevmats.2016.14
16 Mitragotri S, Anderson D G, Chen X, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J, Stevens M M, Sun S, Teoh S, Venkatraman S S, Xia Y, Wang S, Gu Z, Xu C. Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 2015, 9(7): 6644–6654
https://doi.org/10.1021/acsnano.5b03569
17 Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7(10): 4291–4305
https://doi.org/10.1039/C4NR07682F
18 Peng H, Liu X, Wang G, Li M, Bratlie K M, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(34): 6856–6870
https://doi.org/10.1039/C5TB00617A
19 Nguyen T X, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (London), 2016, 11(9): 1169–1185
https://doi.org/10.2217/nnm.16.9
20 Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology, 2007, 7(6): 467–477
https://doi.org/10.1038/nri2096
21 Nesbitt W S, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009, 15(6): 665–673
https://doi.org/10.1038/nm.1955
22 Nandi S, Brown A C. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses. Experimental Biology and Medicine (Maywood, N.J.), 2016, 241(10): 1138–1148
https://doi.org/10.1177/1535370216647126
23 Woulfe D. Review articles: Platelet G protein—coupled receptors in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2005, 3(10): 2193–2200
https://doi.org/10.1111/j.1538-7836.2005.01338.x
24 Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A. Platelet shape changes and adhesion under high shear flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22(2): 329–334
https://doi.org/10.1161/hq0202.104122
25 Frojmovic M M, Milton J G. Human platelet size, shape, and related functions in health and disease. Physiological Reviews, 1982, 62(1): 185–261
26 Kamath S, Blann A, Lip G. Platelet activation: Assessment and quantification. European Heart Journal, 2001, 22(17): 1561–1571
https://doi.org/10.1053/euhj.2000.2515
27 Jackson S P. The growing complexity of platelet aggregation. Blood, 2007, 109(12): 5087–5095
https://doi.org/10.1182/blood-2006-12-027698
28 Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
https://doi.org/10.1586/14737140.8.8.1247
29 Liu X, Zhang F, Wang Q, Gao J, Meng J, Wang S, Yang Z, Jiang L. Platelet-inspired multiscaled cytophilic interfaces with high specificity and efficiency toward point-of-care cancer diagnosis. Small, 2014, 10(22): 4677–4683
https://doi.org/10.1002/smll.201401530
30 Gires O, Klein C A, Baeuerle P A. On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 2009, 9(2): 143–143
https://doi.org/10.1038/nrc2499-c1
31 Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 2007, 96(3): 417–423
https://doi.org/10.1038/sj.bjc.6603494
32 Sarkar S, Alam M A, Shaw J, Dasgupta A K. Drug delivery using platelet cancer cell interaction. Pharmaceutical Research, 2013, 30(11): 2785–2794
https://doi.org/10.1007/s11095-013-1097-1
33 Brown A C, Stabenfeldt S E, Ahn B, Hannan R T, Dhada K S, Herman E S, Stefanelli V, Guzzetta N, Alexeev A, Lam W A, Lyon L A, Barker T H. Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Materials, 2014, 13(12): 1108–1114
https://doi.org/10.1038/nmat4066
34 Doshi N, Orje J N, Molins B, Smith J W, Mitragotri S, Ruggeri Z M. Platelet mimetic particles for targeting thrombi in flowing blood. Advanced Materials, 2012, 24(28): 3864–3869
https://doi.org/10.1002/adma.201200607
35 Anselmo A C, Modery-Pawlowski C L, Menegatti S, Kumar S, Vogus D R, Tian L L, Chen M, Squires T M, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11): 11243–11253
https://doi.org/10.1021/nn503732m
36 Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, 23(7-8): 619–626
https://doi.org/10.3109/1061186X.2015.1052074
37 Luk B T, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015, 220: 600–607
https://doi.org/10.1016/j.jconrel.2015.07.019
38 Wang Q, Cheng H, Peng H, Zhou H, Li P Y, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91: 125–140
https://doi.org/10.1016/j.addr.2014.12.003
39 Fang R H, Hu C M J, Luk B T, Gao W, Copp J A, Tai Y, O’Connor D E, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters, 2014, 14(4): 2181–2188
https://doi.org/10.1021/nl500618u
40 Hu C M J, Fang R H, Copp J, Luk B T, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnology, 2013, 8(5): 336–340
https://doi.org/10.1038/nnano.2013.54
41 Hu C M J, Fang R H, Luk B T, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8(12): 933–938
https://doi.org/10.1038/nnano.2013.254
42 Hu C M J, Zhang L, Aryal S, Cheung C, Fang R H, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980–10985
https://doi.org/10.1073/pnas.1106634108
43 Parodi A, Quattrocchi N, van de Ven A L, Chiappini C, Evangelopoulos M, Martinez J O, Brown B S, Khaled S Z, Yazdi I K, Enzo M V. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nature Nanotechnology, 2013, 8(1): 61–68
https://doi.org/10.1038/nnano.2012.212
44 Fan Z, Zhou H, Li P Y, Speer J E, Cheng H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(46): 8231–8238
https://doi.org/10.1039/C4TB00980K
45 Luk B T, Hu C M J, Fang R H, Dehaini D, Carpenter C, Gao W, Zhang L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6(5): 2730–2737
https://doi.org/10.1039/C3NR06371B
46 Li J, Sharkey C C, Wun B, Liesveld J L, King M R. Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 2016, 228: 38–47
https://doi.org/10.1016/j.jconrel.2016.02.036
47 Ponta H, Sherman L, Herrlich P A. CD44: From adhesion molecules to signalling regulators. Nature Reviews. Molecular Cell Biology, 2003, 4(1): 33–45
https://doi.org/10.1038/nrm1004
48 Hu Q, Sun W, Qian C, Wang C, Bomba H N, Gu Z. Anticancer platelet-mimicking nanovehicles. Advanced Materials, 2015, 27(44): 7043–7050
https://doi.org/10.1002/adma.201503323
49 Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126
https://doi.org/10.1021/acs.nanolett.5b04343
50 Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34
https://doi.org/10.1016/j.addr.2015.10.022
51 Cohen J A, Beaudette T T, Tseng W W, Bachelder E M, Mende I, Engleman E G, Fréchet J M. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: The effect of particle size. Bioconjugate Chemistry, 2008, 20(1): 111–119
https://doi.org/10.1021/bc800338n
52 Kwon Y J, Standley S M, Goh S L, Fréchet J M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. Journal of Controlled Release, 2005, 105(3): 199–212
https://doi.org/10.1016/j.jconrel.2005.02.027
53 Li J, Ai Y, Wang L, Bu P, Sharkey C C, Wu Q, Wun B, Roy S, Shen X, King M R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76: 52–65
https://doi.org/10.1016/j.biomaterials.2015.10.046
54 Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba H N, Xin H, Shen Q, Gu Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 2016, 
https://doi.org/10.1002/adma.201603463
55 Swami A, Reagan M R, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu Z N, Nagano K, Baron R, Sacco A, Roccaro A M, Farokhzad O C, Ghobrial I M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10287–10292
https://doi.org/10.1073/pnas.1401337111
56 Hu C M J, Fang R H, Wang K C, Luk B T, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen C H, Kroll A V, Carpenter C, Ramesh M, Qu V, Patel S H, Zhu J, Shi W, Hofman F M, Chen T C, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571): 118–121
https://doi.org/10.1038/nature15373
57 Farokhzad O C. Nanotechnology: Platelet mimicry. Nature, 2015, 526(7571): 47–48
https://doi.org/10.1038/nature15218
[1] Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4[J]. Front. Chem. Sci. Eng., 2020, 14(5): 880-888.
[2] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[3] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[4] Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen. Functional ferritin nanoparticles for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 633-646.
[5] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[6] Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research[J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[7] Jennica L. Zaro,Wei-Chiang Shen. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery[J]. Front. Chem. Sci. Eng., 2015, 9(4): 407-427.
[8] Tzu-Lan CHANG, Honglei ZHAN, Danni LIANG, Jun F. LIANG. Nanocrystal technology for drug formulation and delivery[J]. Front. Chem. Sci. Eng., 2015, 9(1): 1-14.
[9] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[10] Yeonhee YUN,Byung Kook LEE,Kinam PARK. Controlled drug delivery systems: the next 30 years[J]. Front. Chem. Sci. Eng., 2014, 8(3): 276-279.
[11] Yuwei WANG,David W. Grainger. Barriers to advancing nanotechnology to better improve and translate nanomedicines[J]. Front. Chem. Sci. Eng., 2014, 8(3): 265-275.
[12] Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Front. Chem. Sci. Eng., 2014, 8(3): 253-264.
[13] Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability[J]. Front. Chem. Sci. Eng., 2014, 8(3): 353-361.
[14] Michelle TRAN,Chun WANG. Semi-solid materials for controlled release drug formulation: current status and future prospects[J]. Front. Chem. Sci. Eng., 2014, 8(2): 225-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed