Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 220-230    https://doi.org/10.1007/s11705-017-1624-4
RESEARCH ARTICLE
Solvates and polymorphs of clindamycin phosphate: Structural, thermal stability and moisture stability studies
Junbo Gong1,2(), Dejiang Zhang1,2, Yuanyuan Ran1,2, Keke Zhang1,2, Shichao Du1,2
1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Seience and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
 Download: PDF(552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Clindamycin phosphate (CP), an antibacterial agent, has been reported to form several solid-state forms. The crystal structures of two CP solvates, a dimethyl sulfoxide (DMSO) solvate and a methanol/water solvate (solvate V), have been determined by single crystal X-ray diffraction. The properties and transformations of these forms were characterized by powder X-ray diffraction, Single-crystal X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, hot-stage microscopy, and dynamic vapor sorption. Very different hydrogen bonding networks exist among the host-host and host-solvent molecules in the two crystal structures, resulting in different moisture stabilities. The thermal stabilities of the two solvates upon heating and desolvation were also studied. When the temperature was above the boiling point of methanol, solvate V converted to a polymorphic phase after a one step desolvation process, whereas the desolvation temperature of the DMSO solvate was below the boiling point of DMSO. At the relative humidity above 43%, the DMSO solvate transformed to a hydrate at 25 °C. In contrast, solvate V did not transform at any of the humidities studied.

Keywords clindamycin phosphate      solvate      crystal structure      thermal stability      moisture stability     
Corresponding Author(s): Junbo Gong   
Just Accepted Date: 12 January 2017   Online First Date: 17 March 2017    Issue Date: 12 May 2017
 Cite this article:   
Junbo Gong,Dejiang Zhang,Yuanyuan Ran, et al. Solvates and polymorphs of clindamycin phosphate: Structural, thermal stability and moisture stability studies[J]. Front. Chem. Sci. Eng., 2017, 11(2): 220-230.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1624-4
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/220
Fig.1  Molecular structure of clindamycin phosphate
Tab.1  The different relative humidity value of saturated salt solution
Fig.2  PXRD patterns of CP solvates. (a) SDMSO; (b) solvate V
Tab.2  Crystallographic data for CP SDMSO and Solvate V
Fig.3  (a) Hydrogen bonds in SDMSO crystal structure; (b) a unit cell of SDMSO crystal
Fig.4  (a) The layered structure in SDMSOcrystal; (b) hydrogen bonding networks and resulting construction of DMSO channels in the SDMSO crystal structure. The blue lines indicated the hydrogen bonds
Tab.3  Hydrogen bond parameters for SDMSO
Fig.5  (a) Hydrogen bonds in solvate V crystal structure; (b) a unit cell of solvate V crystal
Tab.4  Hydrogen bond parameters for solvate V
Fig.6  (a) DSC plots of SDMSO and solvate V; (b) TGA plot of SDMSO
Fig.7  HSM images showing the desolvation and melting of SDMSO
Fig.8  Crystal packing of solvate V viewed along the c axis. Clindamycin phosphate molecules (blue) were shown as space filling models (van der Waals radius)
Fig.9  (a) SDMSO sorption-desorption cycles performed at 25 °C; (b) PXRD patterns of SDMSO under different RHs
Fig.10  (a) Channel formation in the host-DMSO assembly (along the b axis). The blue and red dashed lines represent hydrogen bonds; (b) space filling model with DMSO molecules removed (using van der Waals radius)
Fig.11  (a) Moisture sorption isotherm of solvate V performed at 25 °C; (b) PXRD patterns of solvate V following exposure to RH values ranging from 7% to 98%, each for 2 weeks at 25 °C
Fig.12  PXRD patterns of polymorph VI following exposure to RH values ranging from 7% to 98%, each for 1 week at 25 °C
Fig.13  Schematic representation of the moisture-induced solid-state transition between different forms of clindamycin phosphate
1 Fujii K, Aoki  M, Uekusa H . Solid-state hydration/dehydration of erythromycin A investigated by ab initio powder X-ray diffraction analysis: Stoichiometric and nonstoichiometric dehydrated hydrate. Crystal Growth & Design, 2013, 13(5): 2060–2066
https://doi.org/10.1021/cg400121u
2 Cui P, Yin  Q, Guo Y ,  Gong J. Polymorphic crystallization and transformation of candesartan cilexetil. Industrial & Engineering Chemistry Research, 2012, 51(39): 12910–12916
https://doi.org/10.1021/ie2024855
3 Fujii K, Uekusa  H, Itoda N ,  Yonemochi E ,  Terada K . Mechanism of dehydration-hydration processes of lisinopril dihydrate investigated by ab initio powder X-ray diffraction analysis. Crystal Growth & Design, 2012, 12(12): 6165–6172
https://doi.org/10.1021/cg3013377
4 Gillon A L, Davey  R J, Storey  R, Feeder N ,  Nichols G ,  Dent G, Apperley  D C. Solid state dehydration processes: Mechanism of water loss from crystalline inosine dihydrate. Journal of Physical Chemistry B, 2005, 109(11): 5341–5347
https://doi.org/10.1021/jp046122l
5 Chakravarty P, Suryanarayanan  R. Characterization and structure analysis of thiamine hydrochloride methanol solvate. Crystal Growth & Design, 2010, 10(10): 4414–4420
https://doi.org/10.1021/cg100522f
6 Renou L, Coste  S, Cartigny Y ,  Petit M ,  Vincent C ,  Schneider J M ,  Coquerel G . Mechanism of hydration and dehydration of ciclopirox ethanolamine (1:1). Crystal Growth & Design, 2009, 9(9): 3918–3927
https://doi.org/10.1021/cg8013877
7 Jing D, Wang  Y, Chen Z ,  Zhou L, Wang  J. Polymorphism and crystal transformation of penicillin sulfoxide. Frontiers of Chemical Science and Engineering, 2011, 5(4): 442–447
https://doi.org/10.1007/s11705-011-1140-x
8 Rohani S. Applications of the crystallization process in the pharmaceutical industry. Frontiers of Chemical Engineering in China, 2010, 4(1): 2–9
https://doi.org/10.1007/s11705-009-0297-z
9 Lu J, Li  Z, Jiang X . Polymorphism of pharmaceutical molecules: Perspectives on nucleation. Frontiers of Chemical Engineering in China, 2010, 4(1): 37–44
https://doi.org/10.1007/s11705-009-0294-2
10 Zhang X, Yin  Q, Du W ,  Gong J, Bao  Y, Zhang M ,  Hou B, Hao  H. Phase transformation between anhydrate and monohydrate of sodium dehydroacetate. Industrial & Engineering Chemistry Research, 2015, 54(13): 3438–3444
https://doi.org/10.1021/ie504873p
11 Jali B R, Baruah  J B. Polymorphs and solvates of 2-(1,4-dihydro-1,4-dioxonaphthalen-3-ylthio)benzoic acid. Crystal Growth & Design, 2012, 12(6): 3114–3122
https://doi.org/10.1021/cg300318u
12 Zimmermann A, Frøstrup  B, Bond A D . Polymorphs of pridopidine hydrochloride. Crystal Growth & Design, 2012, 12(6): 2961–2968
https://doi.org/10.1021/cg300185n
13 Shevchenko A, Belle  D D, Tiittanen  S, Karjalainen A ,  Tolvanen A ,  Tanninen V P ,  Haarala J ,  Mäkelä M ,  Yliruusi J ,  Miroshnyk I . Coupling polymorphism/Solvatomorphism and physical stability evaluation with early salt synthesis optimization of an investigational drug. Organic Process Research & Development, 2011, 15(3): 666–672
https://doi.org/10.1021/op200026f
14 Aitipamula S, Chow  P S, Tan  R B H. Solvates and polymorphic phase transformations of 2-chloro-4-nitrobenzoic acid. CrystEngComm, 2011, 13(3): 1037–1045
https://doi.org/10.1039/C0CE00361A
15 Braun D E, Gelbrich  T, Kahlenberg V ,  Tessadri R ,  Wieser J ,  Griesser U J . Stability of solvates and packing systematics of nine crystal forms of the antipsychotic drug aripiprazole. Crystal Growth & Design, 2009, 9(2): 1054–1065
https://doi.org/10.1021/cg8008909
16 Bisht K K, Kathalikkattil  A C, Suresh  E. Hydrogen-bonded one- and two-dimensional hybrid water-chloride motifs. Crystal Growth & Design, 2012, 12(2): 556–561
https://doi.org/10.1021/cg2014094
17 Jungwirth P, Tobias  D J. Ions at the air/water interface. Journal of Physical Chemistry B, 2002, 106(25): 6361–6373
https://doi.org/10.1021/jp020242g
18 Hossain M A, Saeed  M A, Fronczek  F R, Wong  B M, Dey  K R, Mendy  J S, Gibson  D. Charge-assisted encapsulation of two chlorides by a hexaprotonated azamacrocycle. Crystal Growth & Design, 2010, 10(4): 1478–1481
https://doi.org/10.1021/cg100110f
19 Vippagunta S R ,  Brittain H G ,  Grant D J W . Crystalline solids. Advanced Drug Delivery Reviews, 2001, 48(1): 3–26
https://doi.org/10.1016/S0169-409X(01)00097-7
20 Bakhoda A, Khavasi  H R, Safari  N. Discrete cubane-like bromide-water cluster. Crystal Growth & Design, 2011, 11(4): 933–935
https://doi.org/10.1021/cg101613b
21 Matsuo K, Matsuoka  M. Solid-state polymorphic transition of theophylline anhydrate and humidity effect. Crystal Growth & Design, 2007, 7(2): 411–415
https://doi.org/10.1021/cg060299i
22 Singh D, Baruah  J B. Structural study on solvates of dopamine-based cyclic imide derivatives. Crystal Growth & Design, 2011, 11(3): 768–777
https://doi.org/10.1021/cg101316u
23 Morris K R, Griesser  U J, Eckhardt  C J, Stowell  J G. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Advanced Drug Delivery Reviews, 2001, 48(1): 91–114
https://doi.org/10.1016/S0169-409X(01)00100-4
24 Babu N J, Nangia  A. Multiple Z′ in carboxylic acid-pyridine trimer synthon and Kagomé lattice in the structure of 5-methylpyrazine-2,3-dicarboxylic acid. Crystal Growth & Design, 2006, 6(9): 1995–1999
https://doi.org/10.1021/cg060180+
25 Bhattacharya S, Sameena  J, Saha B K . Solvates of ajmaline and two-dimensional isostructurality between methanol and ethanol solvates. Crystal Growth & Design, 2011, 11(4): 905–909
https://doi.org/10.1021/cg100994t
26 Liu Z, Yin  Q, Zhang X ,  Gong J, Xie  C. Characterization and structure analysis of cefodizime sodium solvates crystallized from water and ethanol binary solvent mixtures. Industrial & Engineering Chemistry Research, 2014, 53(8): 3373–3377
https://doi.org/10.1021/ie403374q
27 Stevens D L, Maier  K A, Laine  B M, Mitten  J E. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. Journal of Infectious Diseases, 1987, 155(2): 220–228
https://doi.org/10.1093/infdis/155.2.220
28 Ran Y, Dong  W, Wu S ,  Wang J, Gong  J. Transformations among the new solid-state forms of clindamycin phosphate. Organic Process Research & Development, 2013, 17(11): 1445–1450
https://doi.org/10.1021/op400232v
29 ASTM. Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Glycerin Solutions. ASTM E104-85, 1996
30 Nyqvist H, Nyqvist  H. Saturated salt solutions for maintaining specified relative humidity. Energy, 1980, 10: 1085–1090
31 Fujii K, Ashida  Y, Uekusa H ,  Hirano S ,  Toyota S ,  Toda F, Pan  Z, Harris K D M . Vapour induced crystalline transformation investigated by ab initio powder X-ray diffraction analysis. Crystal Growth & Design, 2009, 9(2): 1201–1207
https://doi.org/10.1021/cg801142p
32 Chavez K J, Guevara  M, Rousseau R W . Characterization of solvates formed by sodium naproxen and an homologous series of alcohols. Crystal Growth & Design, 2010, 10(8): 3372–3377
https://doi.org/10.1021/cg9013202
[1] FCE-16051-of-GJ_suppl_1 Download
[1] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
[2] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed