Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 205-210    https://doi.org/10.1007/s11705-017-1625-3
RESEARCH ARTICLE
Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene
Shenghui Zhou1, Kuiyi You1,2(), Zhengming Yi1,2, Pingle Liu1,2, Hean Luo1,2()
1. School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
2. National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal salts with highly electronegative cations have been used to effectively catalyze the liquid-phase nitration of benzene by NO2 to nitrobenzene under solvent-free conditions. Several salts including FeCl3, ZrCl4, AlCl3, CuCl2, NiCl2, ZnCl2, MnCl2, Fe(NO3)3·9H2O, Bi(NO3)3·5H2O, Zr(NO3)4·5H2O, Cu(NO3)2·6H2O, Ni(NO3)2·6H2O, Zn(NO3)2·6H2O, Fe2(SO4)3, and CuSO4 were examined and anhydrous FeCl3 exhibited the best catalytic performance under the optimal reaction conditions. The benzene conversion and selectivity to nitrobenzene were both over 99%. In addition, it was determined that the metal counterion and the presence of water hydrates in the salt affects the catalytic activity. This method is simple and efficient and may have potential industrial application prospects.

Keywords metal salts      electronegativity      nitrobenzene      NO2      catalytic nitration     
Corresponding Author(s): Kuiyi You,Hean Luo   
Just Accepted Date: 28 February 2017   Online First Date: 17 April 2017    Issue Date: 12 May 2017
 Cite this article:   
Shenghui Zhou,Kuiyi You,Zhengming Yi, et al. Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene[J]. Front. Chem. Sci. Eng., 2017, 11(2): 205-210.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1625-3
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/205
Fig.1  Effect of various metal chlorides on the benzene nitration reaction. Reaction conditions: 75 °C, reaction time 4 h, molar ratio of benzene (0.03 mol) to NO2 1 : 5, amount of catalyst 0.3 mmol (1 mol-% of benzene)
Fig.2  Effect of various metal nitrates on the benzene nitration reaction. Reaction conditions: 75 °C, reaction time 4 h, molar ratio of benzene (0.03 mol) to NO2 1 : 5, amount of catalyst 0.3 mmol (1 mol-% of benzene)
Fig.3  Scheme 1Possible nitration reaction pathway for benzene over metal salt catalysts
Fig.4  Comparison of various iron(III) and copper(II) salts on the benzene nitration reaction. Reaction conditions: 75 °C, reaction time 4 h, molar ratio of benzene (0.03 mol) to NO2 1 : 5, amount of catalyst 0.3 mmol (1 mol-% of benzene)
Fig.5  Effect of anhydrous and hydrated metal chloride salts on the benzene nitration reaction. Reaction conditions: 75 °C, reaction time 4 h, molar ratio of benzene (0.03 mol) to NO2 1 : 5, amount of catalyst 0.3 mmol (1 mol-% of benzene)
Fig.6  Effects of (A) reaction temperature, (B) molar ratio, (C) reaction time and (D) amount of catalyst on the catalytic nitration of benzene
Fig.7  Recycle and reuse of the FeCl3 catalyst in the benzene nitration reaction. Reaction conditions: 100 °C, reaction time 4 h, molar ratio of benzene (0.03 mol) to NO2 1 : 5, amount of catalyst 0.06 g
1 Schofield K. Aromatic Nitration.Cambridge: Cambridge University Press, 1980
2 Ma X, Li B, Lv C, Lu M, Wu J, Liang L. An efficient and eco-friendly MoO3-SiO2 solid acid catalyst for electrophilic aromatic nitration with N2O5. Catalysis Letters, 2011, 141(12): 1814–1820
https://doi.org/10.1007/s10562-011-0721-0
3 Olah G A, Malhotra R, Narang S C. Nitration: Methods and Mechanisms.New York: VCH, 1989
4 Smith K, Musson A, De Boos G A. A novel method for the nitration of simple aromatic compounds. Journal of Organic Chemistry, 1998, 63(23): 8448–8454
https://doi.org/10.1021/jo981557o
5 Kalbasi R J, Ghiaci M, Massah A R. Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Applied Catalysis A, General, 2009, 353(1): 1–8
https://doi.org/10.1016/j.apcata.2008.10.013
6 Kulal A B, Dongare M K, Umbarkar S B. Sol-gel synthesised WO3 nanoparticles supported on mesoporous silica for liquid phase nitration of aromatics. Applied Catalysis B: Environmental, 2016, 182: 142–152
https://doi.org/10.1016/j.apcatb.2015.09.020
7 Mao W, Ma H, Wang B. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts. Journal of Hazardous Materials, 2009, 167(1): 707–712
https://doi.org/10.1016/j.jhazmat.2009.01.045
8 Bernasconi S, Pirngruber G D, Prins R. Influence of the properties of zeolite BEA on its performance in the nitration of toluene and nitrotoluene. Journal of Catalysis, 2004, 224(2): 297–303
https://doi.org/10.1016/j.jcat.2004.03.015
9 Zhao X, Han Y, Sun X, Wang Y. Structure and catalytic performance of H3PW12O40/SiO2 prepared by several methods. Chinese Journal of Catalysis, 2007, 28(1): 91–95
https://doi.org/10.1016/S1872-2067(07)60011-4
10 Parida K M, Pattnayak P K. Sulphated zirconia: An efficient paraselective catalyst for mononitration of halobenzenes. Catalysis Letters, 1997, 47(3-4): 255–257
https://doi.org/10.1023/A:1019073525356
11 Yadav G D, Nair J J. Selectivity engineering in the nitration of chlorobenzene using eclectically engineered sulfated zirconia and carbon molecular sieve catalysts. Catalysis Letters, 1999, 62(1): 49–52
https://doi.org/10.1023/A:1019066131736
12 Sato H, Nagai K, Yoshioka H, Nagaokab Y. Vapor phase nitration of benzene over solid acid catalysts IV. Nitration with nitric acid (3); supported sulfuric acid catalyst with co-feeding of a trace amount of sulfuric acid. Applied Catalysis A, General, 1999, 180(1-2): 359–366
https://doi.org/10.1016/S0926-860X(98)00367-6
13 Gong S, Liu L, Cui Q, Ding J. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method. Journal of Hazardous Materials, 2010, 178(1-3): 404–408
https://doi.org/10.1016/j.jhazmat.2010.01.095
14 Olah G A, Krishnamurthy V V, Narang S C. Aromatic substitution. 50. Mercury (II)-promoted azeotropic nitration of aromatics over Nafion-H solid superacidic catalyst. Journal of Organic Chemistry, 1982, 47(3): 596–598
https://doi.org/10.1021/jo00342a052
15 Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chemical Communications, 2002, (9): 994–995
https://doi.org/10.1039/b202308n
16 You K Y, Deng R J, Jian J, Liu P L, Ai Q H, Luo H A H. 3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene. RSC Advances, 2015, 5(89): 73083–73090
https://doi.org/10.1039/C5RA15679C
17 Ma X M, Li B D, Lu M, Lv C X. Selective nitration of aromatic compounds catalyzed by Hβ zeolite using N2O5. Chinese Chemical Letters, 2012, 23(7): 809–812
https://doi.org/10.1016/j.cclet.2012.05.016
18 Ma X M, Li B D, Lu M, Lv C X. Rare earth metal triflates catalyzed electrophilic nitration using N2O5. Chinese Chemical Letters, 2012, 23(1): 73–76
https://doi.org/10.1016/j.cclet.2011.09.021
19 Samajdar S, Becker F F, Banik B K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate. Tetrahedron Letters, 2000, 41(42): 8017–8020
https://doi.org/10.1016/S0040-4039(00)01397-6
20 Iranpoor N, Firouzabadi H, Heydari R, Shiri M. Nitration of aromatic compounds by Zn(NO3)2·2N2O4 and its charcoal-supported system. Synthetic Communications, 2005, 35(2): 263–270
https://doi.org/10.1081/SCC-200048450
21 Pervez H, Onyiriuka S O, Rees L, Rooney J R, Suckling C J. Selective functionalization: Part 10. The nitration of phenols by pyridine derivatives carrying a transferable nitro group. Tetrahedron, 1988, 44(14): 4555–4568
https://doi.org/10.1016/S0040-4020(01)86158-5
22 Cheng G, Duan X, Qi X, Lu C. Nitration of aromatic compounds with NO2/air catalyzed by sulfonic acid-functionalized ionic liquids. Catalysis Communications, 2008, 10(2): 201–204
https://doi.org/10.1016/j.catcom.2008.08.019
23 Smith K, Almeera S, Petersa C. Regioselective mononitration of aromatic compounds by zeolite/dinitrogen tetroxide/air in a solvent-free system. Chemical Communications, 2001, (24): 2748–2749
https://doi.org/10.1039/b108952h
24 Bosch E, Kochi K. Thermal and photochemical nitration of aromatic hydrocarbons with nitrogen dioxide. Journal of Organic Chemistry, 1994, 59(12): 3314–3325
https://doi.org/10.1021/jo00091a018
25 Suzuki H, Yonezawa S, Nonoyama N, Mori T. Iron(III)-catalysed nitration of non-activated and moderately activated arenes with nitrogen dioxide–molecular oxygen under neutral conditions. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1996, (19): 2385–2389
https://doi.org/10.1039/P19960002385
26 Tanaka K I, Ozaki A. Acid-base properties and catalytic activity of solid surfaces. Journal of Catalysis, 1967, 8(1): 1–7
https://doi.org/10.1016/0021-9517(67)90274-6
27 Shiri M, Zolfigol M A, Kruger H G, Tanbakouchian Z. Advances in the application of N2O4/NO2 in organic reactions. Tetrahedron, 2010, 66(47): 9077–9106
https://doi.org/10.1016/j.tet.2010.09.057
28 Tang B, Wei S, Peng X. Acid-catalyzed regioselective nitration of o-xylene to 4-nitro-o-xylene with nitrogen dioxide: Brønsted acid versus Lewis acid. Synthetic Communications, 2014, 14(44): 2057–2065
https://doi.org/10.1080/00397911.2013.873468
[1] Yaqin Wang, Lin Yang, Chunxiang Dall’Agnese, Gang Chen, Ai-Jun Li, Xiao-Feng Wang. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(1): 180-186.
[2] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[3] Li XU, Zhi GUO, Lishun DU. Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes[J]. Front Chem Sci Eng, 2013, 7(3): 338-346.
[4] ZHANG Weixin, REN Xiangbin, YANG Zeheng, WANG Hua, WANG Qiang, HUANG Fei. Hydrothermal synthesis of crystalline α-/β-MnO2 nanorods via γ-MnOOH nanorod precursors[J]. Front. Chem. Sci. Eng., 2007, 1(4): 365-371.
[5] LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene[J]. Front. Chem. Sci. Eng., 2007, 1(3): 287-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed