Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 238-251    https://doi.org/10.1007/s11705-017-1627-1
RESEARCH ARTICLE
Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)
Yong Zhu, Zhishan Bai(), Bingjie Wang, Linlin Zhai, Wenqiang Luo
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(585 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A microsphere biosorbent with uniform size (CV= 1.52%), controllable morphology and component, and high mechanical strength was synthesized from chitosan by microfluidic technology combining with chemical crosslinking and solvent extraction. This chitosan microsphere (CS-MS) was prepared with a two-step solidification process, which was acquired by drying for the enhancement of mechanical property in final. The adsorption behavior of CS-MS towards copper (II) and main influencing factors on adsorption performance were investigated by batch experiments. Kinetic data highlighted dominant chemical bonding along with electrons transferring in adsorption process. Isothermal analysis indicated that adsorption capacity was relevant to the number of active site. All these explorations provided a new direction for preparing highly comprehensive performance sorbent used in heavy metal treatment via microfluidic technology.

Keywords chitosan microsphere      microfluidic technology      adsorption      copper (II)     
Corresponding Author(s): Zhishan Bai   
Just Accepted Date: 24 January 2017   Online First Date: 23 March 2017    Issue Date: 12 May 2017
 Cite this article:   
Yong Zhu,Zhishan Bai,Bingjie Wang, et al. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)[J]. Front. Chem. Sci. Eng., 2017, 11(2): 238-251.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1627-1
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/238
Fig.1  Schematic drawing of the microfluidic chip: (a) the chip in expanded view, (b) the chip in assembly view, and (c) the middle plate channels view
Fig.2  The flow chart of preparing CS-MS
Fig.3  Optical micrographs of (a) unsolidified CS-MS and (b) CS-MS after being solidified for 30 min and (c) the crosslinking process
Fig.4  SEM images of (a) the prepared CS-MS and (b) the surface of a single particle of CS-MS
Fig.5  FTIR spectra of (a) chitosan and (b) CS-MS
Fig.6  (a) Size distribution and (b) mechanical strength vs. drying time of CS-MS
Fig.7  The influence of (a) viscosity and (b) flow speed ratio on microsphere diameter
Fig.8  The droplet forming process at cross aisle: (a) necking, (b) breaking, and (c) balling
Fig.9  (a) The typical adsorption kinetic curve and (b) the fitting curve of a pseudo-second order model. (C0= 480 ppm, pH= 5.5,T = 298 K)
Fig.10  (a) The adsorption process of copper (II) ions and (b) amino chelating copper (II) ion
Fig.11  The influence of (a) solution pH, (b) solidification time and (c) CS-MS dosage on adsorption performance
Fig.12  (a) Influence of initial copper (II) concentration on adsorption capacity, (b) the adsorption isotherm, and (c) the fitting curve of Langmuir equation
Ion combination qe/(mg?g?1)Na(I)Cu(II)Al(III)
480 ppm Na++ 120 ppm Cu2+9.926.84?
480 ppm Al3++ 120 ppm Cu2+?3.924.48
480 ppm Na++ 480 ppm Cu2+3.8425.04?
480 ppm Al3++ 480 ppm Cu2+?30.263.16
480 ppm Na++ 480 ppm Cu2++ 480 ppm Al3+3.5217.762.40
Tab.1  Microsphere adsorption capacity for Na(I), Cu(II), Al(III) in different combinations with various concentrations
Fig.13  (a) The adsorption rate and (b) adsorption capacity of CS-MS for Cu(II), Co(II) and Mn(II)
1 Sikder M T, Mihara Y, Islam M S, Saito T, Tanaka S, Kurasaki M. Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chemical Engineering Journal, 2014, 236: 378–387
https://doi.org/10.1016/j.cej.2013.09.093
2 He J S, Chen J P. Cu(II)-imprinted poly(vinyl alcohol)/poly(acrylic acid) membrane for greater enhancement in sequestration of copper ion in the presence of competitive heavy metal ions: Material development, process demonstration, and study of mechanisms. Industrial & Engineering Chemistry Research, 2014, 53(52): 20223–20233
https://doi.org/10.1021/ie5032875
3 Sdiri A, Bouaziz S. Re-evaluation of several heavy metals removal by natural limestones. Frontiers of Chemical Science and Engineering, 2014, 8(4): 418–432
https://doi.org/10.1007/s11705-014-1455-5
4 Sciban M, Radetic B, Kevresan D, Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 2007, 98(2): 402–409
https://doi.org/10.1016/j.biortech.2005.12.014
5 Srivastava N K, Majumder C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 2008, 151(1): 1–8
https://doi.org/10.1016/j.jhazmat.2007.09.101
6 Shafaei A, Rezayee M, Arami M, Nikazar M. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination, 2010, 260(1-3): 23–28
https://doi.org/10.1016/j.desal.2010.05.006
7 Sangvanich T, Sukwarotwat V, Wiacek R J, Grudzien R M, Fryxell G E, Addleman R S, Timchalk C, Yantasee W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of Hazardous Materials, 2010, 182(1-3): 225–231
https://doi.org/10.1016/j.jhazmat.2010.06.019
8 Tran M, Wang C. Semi-solid materials for controlled release drug formulation: Current status and future prospects. Frontiers of Chemical Science and Engineering, 2014, 8(2): 225–232
https://doi.org/10.1007/s11705-014-1429-7
9 Witoon T, Mungcharoen T, Limtrakul J. Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method. Applied Energy, 2014, 118: 32–40
https://doi.org/10.1016/j.apenergy.2013.12.023
10 Vold I M N, Varum K M, Guibal E, Smidsrod O. Binding of ions to chitosan-selectivity studies. Carbohydrate Polymers, 2003, 54(4): 471–477
https://doi.org/10.1016/j.carbpol.2003.07.001
11 Gamage A, Shahidi F. Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007, 104(3): 989–996
https://doi.org/10.1016/j.foodchem.2007.01.004
12 Pillai C K S, Paul W, Sharma C P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 34(7): 641–678
https://doi.org/10.1016/j.progpolymsci.2009.04.001
13 Ma J, Liu C H, Li R, Wang J. Properties and structural characterization of chitosan/graphene oxide biocomposites. Bio-Medical Materials and Engineering, 2012, 22(1-3): 129–135
14 Yeng C M, Husseinsyah S, Ting S S. A comparative study of different crosslinking agent-modified chitosan/corn cob biocomposite films. Polymer Bulletin, 2015, 72(4): 791–808
https://doi.org/10.1007/s00289-015-1305-8
15 Vasconcelos H L, Camargo T P, Gonçalves N S, Neves A, Laranjeira M C M, Fávere V T. Chitosan crosslinked with a metal complexing agent: Synthesis, characterization and copper(II) ions adsorption. Reactive & Functional Polymers, 2008, 68(2): 572–579
https://doi.org/10.1016/j.reactfunctpolym.2007.10.024
16 Li M X, Cheng S L, Yan H S. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chemistry, 2007, 9(8): 894–898
https://doi.org/10.1039/b618045k
17 Zhou D, Zhang L, Guo S L. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 2005, 39(16): 3755–3762
https://doi.org/10.1016/j.watres.2005.06.033
18 Arvand M, Pakseresht M A. Cadmium adsorption on modified chitosan-coated bentonite: Batch experimental studies. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(4): 572–578
https://doi.org/10.1002/jctb.3863
19 Merrifield J D, Davids W G, MacRae J D, Amirbahman A. Uptake of mercury by thiol-grafted chitosan gel beads. Water Research, 2004, 38(13): 3132–3138
https://doi.org/10.1016/j.watres.2004.04.008
20 Zhao F, Yu B, Yue Z, Wang T, Wen X, Liu Z, Zhao C. Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials, 2007, 147(1-2): 67–73
https://doi.org/10.1016/j.jhazmat.2006.12.045
21 Filipovic-Grcic J, Perissutti B, Moneghini M, Voinovich D, Martinac A, Jalsenjak I. Spray-dried carbamazepine-loaded chitosan and HPMC microspheres: Preparation and characterisation. Journal of Pharmacy and Pharmacology, 2003, 55(7): 921–931
https://doi.org/10.1211/0022357021503
22 Peng H, Xiong H, Li J, Xie M, Liu Y, Bai C, Chen L. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 2010, 121(1): 23–28
https://doi.org/10.1016/j.foodchem.2009.11.085
23 Kim J H, Jeon T Y, Choi T M, Shim T S, Kim S H, Yang S M. Droplet microfluidics for producing functional microparticles. Langmuir, 2014, 30(6): 1473–1488
https://doi.org/10.1021/la403220p
24 Yang C H, Huang K S, Lin P W, Lin Y C. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles. Sensors and Actuators. B, Chemical, 2007, 124(2): 510–516
https://doi.org/10.1016/j.snb.2007.01.015
25 Xu J H, Li S W, Tostado C, Lan W J, Luo G S. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device. Biomedical Microdevices, 2009, 11(1): 243–249
https://doi.org/10.1007/s10544-008-9230-3
26 Lu Y, He J, Luo G. An improved synthesis of chitosan bead for Pb(II) adsorption. Chemical Engineering Journal, 2013, 226: 271–278
https://doi.org/10.1016/j.cej.2013.04.078
27 Duran A, Soylak M, Tuncel S A. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. Journal of Hazardous Materials, 2008, 155(1-2): 114–120
https://doi.org/10.1016/j.jhazmat.2007.11.037
28 Ozay O, Ekici S, Baran Y, Kubilay S, Aktas N, Sahiner N. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 2010, 260(1-3): 57–64
https://doi.org/10.1016/j.desal.2010.04.067
29 Nguema P F, Luo Z J, Lian J J. The biosorption of Cr(VI) ions by dried biomass obtained from a chromium-resistant bacterium. Frontiers of Chemical Science and Engineering, 2014, 8(4): 454–464
https://doi.org/10.1007/s11705-014-1456-4
30 Guibal E, Milot C, Eterradossi O, Gauffier C, Domard A. Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. International Journal of Biological Macromolecules, 1999, 24(1): 49–59
https://doi.org/10.1016/S0141-8130(98)00067-1
31 Wang Z K, Hu Q L, Wang Y X. Preparation of chitosan rods with excellent mechanical properties: One candidate for bone fracture internal fixation. Science China. Chemistry, 2011, 54(2): 380–384
https://doi.org/10.1007/s11426-010-4204-8
32 Zhang J, Du Z, Xu S, Zhang S. Synthesis and characterization of Karaya gum/chitosan composite microspheres. Iranian Polymer Journal, 2009, 18(4): 307–313
33 Nisisako T, Torii T, Higuchi T. Novel microreactors for functional polymer beads. Chemical Engineering Journal, 2004, 101(1): 23–29
https://doi.org/10.1016/j.cej.2003.11.019
34 Omi S, Senba T, Nagai M, Ma G H. Morphology development of 10-µm scale polymer particles prepared by SPG emulsification and suspension polymerization. Journal of Applied Polymer Science, 2001, 79(12): 2200–2220
https://doi.org/10.1002/1097-4628(20010321)79:12<2200::AID-APP1028>3.0.CO;2-P
35 Shah J, Jan M R, Haq A, Khan Y.Removal of rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies. Frontiers of Chemical Science and Engineering, 2013, 7(4): 428–436
36 Chung H K, Kim W H, Park J, Cho J, Jeong T Y, Park P K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 28: 241–246
https://doi.org/10.1016/j.jiec.2015.02.021
37 Zhang M M, Wang R Q, Guo W, Xue T, Dai J L. Mercury (II) adsorption on three contrasting Chinese soils treated with two sources of dissolved organic matter: I. Langmuir and Freundlich isotherm evaluation. Soil & Sediment Contamination, 2014, 23(1): 49–62
https://doi.org/10.1080/15320383.2013.772092
38 Jeppu G P, Clement T P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology, 2012, 129-130: 46–53
https://doi.org/10.1016/j.jconhyd.2011.12.001
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[5] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[6] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[9] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[10] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[11] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[12] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[13] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
[14] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[15] Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed