Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 231-237    https://doi.org/10.1007/s11705-017-1633-3
RESEARCH ARTICLE
Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator
Xuhong Zhang, Haimiao Li, Xin Zhang, Meng An, Weiwei Fang, Haitao Yu()
College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
 Download: PDF(328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel gelator that contained both Schiff base and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.

Keywords gelator      Schiff base      chiral recognition      gel formation      gel collapse     
Corresponding Author(s): Haitao Yu   
Just Accepted Date: 15 February 2017   Online First Date: 06 April 2017    Issue Date: 12 May 2017
 Cite this article:   
Xuhong Zhang,Haimiao Li,Xin Zhang, et al. Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator[J]. Front. Chem. Sci. Eng., 2017, 11(2): 231-237.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1633-3
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/231
Fig.1  Scheme 1&chsp;Synthesis of the gelator 1.(i) Hydrazine hydrate, methanol, reflux, 8 h, 40.7%; (ii) salicylaldehyde, ethanol, reflux, 8 h, 77.1%
Fig.2  Chemical structures of 1, (S)- and (R)-BINOL
SolventsPhasea)CGCb) /wt-%c)Tgd) /°C
AnilineG2.456-58
N,N-DimethylanilineGs
NitrobenzeneG0.480-81
MethanolP
EthanolP
Benzyl alcoholS
n-HexaneI
CyclohexaneI
Ethyl acetateI
Ethyl acetoacetateI
MorpholineG3.252–54
DMSOGs
Tab.1  Gelation ability of 1 in various solvents in air at 25 °C
Fig.3  (a) SEM image of xerogel obtained from the gel of 1 in morpholine; (b) FTIR spectra of gel of 1 in morpholine
Fig.4  SEM images of xerogels obtained from the gels (35 mg/mL) of 1 in aniline (left) and in nitrobenzene (right)
Fig.5  Visual chiral recognition of (R)-BINOL and (S)- BINOL through gel 1/ morpholine (3.2 wt-%) enantioselective collapsing: (a) gel of (1+1.5 equiv (S)-BINOL), and (b) suspension of (1+1.5 equiv (R)-BINOL)
Fig.6  SEM images of (a) gel of (1+1.5 equiv (S)-BINOL)/morpholine and (b) suspension of (1+1.5 equiv (R)-BINOL)/morpholine
Fig.7  Partial 1H NMR (500 MHz) spectra of compound 1 (12 mmol/L) and its complexes with the enantiomers of BINOL in CDCl3 at 25 °C: (a) (S)-BINOL, (b) (R)-BINOL, (c) only compound 1, (d) 1+ (S)-BINOL (1.5 equiv), and (e) 1+ (R)-BINOL (1.5 equiv)
Fig.8  Partial 1H NMR (500 MHz) spectra of (a) morpholine (0.05 mL), (b) gelator 1 (1.7 mg, 3.2 wt-% in morpholine), (c) morpholine+ gelator 1, and (d) morpholine+ gelator 1 + 1.5 equiv. (R)-BINOL in CDCl3 (0.45 mL) at 25 °C
1 Sun T, Han D, Rhemann K, Chi L, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. Journal of the American Chemical Society, 2007, 129(6): 1496–1497
https://doi.org/10.1021/ja0686155
2 Tang K, Gan H, Li Y, Chi L, Sun T, Fuchs H. Stereoselective interaction between DNA and chiral surfaces. Journal of the American Chemical Society, 2008, 130(34): 11284–11285
https://doi.org/10.1021/ja8044184
3 Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir, 2013, 29(18): 5435–5442
https://doi.org/10.1021/la400562f
4 Wang Y, Zhang T, Liu L. Enantioselective and α-regioselective allylic amination of Morita-Baylis-Hillman acetates with simple aromatic  amines  catalyzed  by  planarly  chiral ligand/palladium catalyst.  Chinese  Journal of  Chemistry, 2012, 30(11): 2641–2646
5 Velmurugan K, Tang L, Nandhakumar R. A Novel dimeric BINOL for enantioselective recognition of 1,2-amino alcohols. Chinese Journal of Chemistry, 2014, 32(11): 1157–1160
https://doi.org/10.1002/cjoc.201400321
6 Chi L, Zhao J, James T D. Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids. Journal of Organic Chemistry, 2008, 73(12): 4684–4687
https://doi.org/ 10.1021/jo8007622
7 Li Z B, Lin J, Sabat M, Hyacinth M, Pu L. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1, 2-diamine-based bisbinaphthyl molecules. Journal of Organic Chemistry, 2007, 72(13): 4905–4916
https://doi.org/10.1021/jo0704715
8 Jintoku H, Takafuji M, Oda R, Ihara H. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chemical Communications, 2012, 48(40): 4881–4883
https://doi.org/10.1039/c2cc31127e
9 Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Amphiphilic schiff base organogels: Metal-ion-mediated chiral twists and chiral recognition. Chemistry-A European Journal, 2012, 18(16): 4916–4922
https://doi.org/10.1002/chem.201103187
10 Wei G, Zhang S, Dai C, Quan Y, Cheng Y, Zhu C. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chemistry-A European Journal, 2013, 19(47): 16066–16071
https://doi.org/10.1002/chem.201302726
11 Miao W, Zhang L, Wang X, Cao H, Jin Q, Liu M. A dual functional metallogel of amphiphilic copper (II) quinolinol: Redox responsiveness and enantioselectivity. Chemistry-A European Journal, 2013, 19(9): 3029–3036
https://doi.org/10.1002/chem.201203401
12 Xu K, Kong H, Li P, Yang L, Zhang J, Wang C. Acridine-based enantioselective fluorescent sensors for the malate anion in water. New Journal of Chemistry, 2014, 38(3): 1004–1010
https://doi.org/10.1039/c3nj01341c
13 Tu T, Fang W, Sun Z. Visual-size molecular recognition based on gels. Advanced Materials, 2013, 25(37): 5304–5313
https://doi.org/10.1002/adma.201301914
14 Song F, Fei N, Li F, Zhang S, Cheng Y, Zhu C. Zhu C. A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid  anions.  Chemical  Communications, 2013, 49(28): 2891–2893
https://doi.org/10.1039/c3cc40488a
15 Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T. Sonication-triggered instantaneous gel-to-gel transformation. Chemistry-A European Journal, 2010, 16(30): 9099–9106
https://doi.org/10.1002/chem.201000187
16 Fang W, Liu X, Lu Z, Tu T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications, 2014, 50(25): 3313–3316
https://doi.org/10.1039/c3cc49402k
17 Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 2008, 452(7183): 76–79
https://doi.org/10.1038/nature06619
18 Kumar N S S, Varghese S, Narayan G, Das S. Hierarchical self-assembly of donor–acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angewandte Chemie International Edition, 2006, 45(38): 6317–6321
https://doi.org/10.1002/anie.200602088
19 Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561
https://doi.org/10.1007/s11705-016-1589-8
20 Zhang L, Jin Q, Liu M. Enantioselective recognition by chiral supramolecular gels. Chemistry, an Asian Journal, 2016, 11(19): 2642–2649
https://doi.org/10.1002/asia.201600441
21 Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society, 2010, 132(21): 7297–7299
https://doi.org/10.1021/ja102480t
22 Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low molecular mass gelators. Angewandte Chemie, 2011, 123(29): 6731–6735
https://doi.org/10.1002/ange.201180620
23 Shockravi A, Javadi A, Abouzari-Lotf E. Binaphthyl-based macromolecules: A review. RSC Advances, 2013, 3(19): 6717–6746
https://doi.org/10.1039/c3ra22418j
24 Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu X Q, Pu L. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. Journal of Organic Chemistry, 2007, 72(1): 97–101
https://doi.org/10.1021/jo061769i
25 Xu Y F, McCarroll M E. Chiral recognition of 1,1′-binaphthyl-2, 2′-diyl hydrogenphosphate using fluorescence anisotropy. Journal of Photochemistry and Photobiology A Chemistry, 2007, 187(2): 139–145
https://doi.org/10.1016/j.jphotochem.2006.09.015
26 Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63(31): 7397–7406
https://doi.org/10.1016/j.tet.2007.03.120
27 Dado G P, Gellman S H. Intramolecular hydrogen bonding in derivatives of beta-alanine and gamma-amino butyric acid: Model studies for the folding of unnatural polypeptide backbones. Journal of the American Chemical Society, 1994, 116(3): 1054–1062
https://doi.org/10.1021/ja00082a029
[1] Wolfgang Bauer, Tanja Ossiander, Birgit Weber. Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties[J]. Front. Chem. Sci. Eng., 2018, 12(3): 400-408.
[2] Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response[J]. Front. Chem. Sci. Eng., 2018, 12(2): 252-261.
[3] Ziyan Li,Yaodong Huang,Dongli Fan,Huimin Li,Shuxue Liu,Luyuan Wang. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups[J]. Front. Chem. Sci. Eng., 2016, 10(4): 552-561.
[4] Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties[J]. Front. Chem. Sci. Eng., 2015, 9(4): 488-493.
[5] Zipei SUN,Xuelin DONG,Yan ZHAI,Ziyan Li,Yaodong HUANG. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property[J]. Front. Chem. Sci. Eng., 2014, 8(2): 219-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed