Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 338-345    https://doi.org/10.1007/s11705-017-1644-0
RESEARCH ARTICLE
Removal of dyes from wastewater by growing fungal pellets in a semi-continuous mode
Tao Lu, Qilei Zhang, Shanjing Yao()
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To increase the efficiency of dye removal from wastewater using mycelial pellets, a bubble column reactor with a simple structure was designed and efficiently used to remove dyes from solution containing dyes. The mycelial pellets were prepared by marine fungus Aspergillus niger ZJUBE-1. Eight dyes were tested as dye targets for the adsorption capacity of mycelial pellets and good removal results were obtained. Eriochrome black T was selected as a model dye for characterizing the adsorption processes in detail. The measurement results of Zeta potential and FT-IR analysis indicate that the electrostatic attraction may play a key role in the biosorption process. The bubble column reactor was utilized to study the batch dye-removal efficiency of mycelial pellets. A re-culture process between every two batches, which was under non-sterile condition, successfully enhanced the utilization of mycelium biomass. The dye removal rate is 96.4% after 12 h in the first batch and then decreases slowly in the following batches. This semi-continuous mode, which consists of commutative processes of dye-removal and re-culture, has some outstanding advantages, such as low power consumption, easy operation, high dye removal rate, and efficient biomass utilization.

Keywords dye      mycelial pellets      marine fungus      bubble column reactor      semi-continuous biosorption     
Corresponding Author(s): Shanjing Yao   
Just Accepted Date: 07 April 2017   Online First Date: 19 May 2017    Issue Date: 23 August 2017
 Cite this article:   
Tao Lu,Qilei Zhang,Shanjing Yao. Removal of dyes from wastewater by growing fungal pellets in a semi-continuous mode[J]. Front. Chem. Sci. Eng., 2017, 11(3): 338-345.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1644-0
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/338
Fig.1  The Schematic diagram of the (a) running and (b) resting status of the bubble column reactor. The dimensions are (cm): a, 1; b, 9; c, 40; d, 6.5. The air inlet and two outlets are the same in size
Fig.2  The dye removal capacity of mycelial pellets for eight dyes
Fig.3  Effects of (a) initial dye concentrations and (b) average pellets diameters on dye removal rate
Fig.4  (a) Effects of initial pH values on dye removal rate; (b) the variation of zeta potential of mycelium: black solid squares represent control mycelium under different pH; hollow symbols represent mycelium that reached adsorption equilibrium in solutions of different EBT concentration at pH 3.0
Fig.5  FT-IR spectra of control mycelium and mycelium loaded with EBT
Fig.6  The process images of the first batch in the bubble column reactor: (a) reactor loaded with fresh mycelial pellets and EBT solution; (b) aeration start; (d) aeration for 12 h; (d) settling; (e) the end of the settlement
Fig.7  (a) Dye removal rate of ten batches in the bubble column reactor. Samples were taken at 0, 1, 2, 4, 7, 12 h of each batch. (b?e) The section image of lyophilized mycelial pellets after different reuse batches
1 Yagub M T, Sen T K, Afroze S, Ang H M. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014, 209: 172–184
https://doi.org/10.1016/j.cis.2014.04.002
2 Yeap K L, Teng T T, Poh B T, Morad N, Lee K E. Preparation and characterization of coagulation/flocculation behavior of a novel inorganic-organic hybrid polymer for reactive and disperse dyes removal. Chemical Engineering Journal, 2014, 243: 305–314
https://doi.org/10.1016/j.cej.2014.01.004
3 Zhao R, Wang Y, Li X, Sun B L, Wang C. Synthesis of beta-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue. ACS Applied Materials & Interfaces, 2015, 7(48): 26649–26657
https://doi.org/10.1021/acsami.5b08403
4 Quan X C, Zhang X, Xu H D. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Research, 2015, 78: 74–83
https://doi.org/10.1016/j.watres.2015.03.024
5 Sarkka H, Bhatnagar A, Sillanpaa M. Recent developments of electro-oxidation in water treatment—A review. Journal of Electroanalytical Chemistry, 2015, 754: 46–56
https://doi.org/10.1016/j.jelechem.2015.06.016
6 Rangabhashiyam S, Suganya E, Selvaraju N, Varghese L A. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World Journal of Microbiology & Biotechnology, 2014, 30(6): 1669–1689
https://doi.org/10.1007/s11274-014-1599-y
7 Espinosa-Ortiz E J, Rene E R, Pakshirajan K, van Hullebusch E D, Lens P N L. Fungal pelleted reactors in wastewater treatment: Applications and perspectives. Chemical Engineering Journal, 2016, 283: 553–571
https://doi.org/10.1016/j.cej.2015.07.068
8 Khan R, Bhawana P, Fulekar M H. Microbial decolorization and degradation of synthetic dyes: A review. Reviews in Environmental Science and Biotechnology, 2013, 12(1): 75–97
https://doi.org/10.1007/s11157-012-9287-6
9 Kyzas G Z, Fu J, Matis K A. The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials (Basel), 2013, 6(11): 5131–5158
https://doi.org/10.3390/ma6115131
10 Chen H Y, Guan Y X, Yao S J. A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(11): 1733–1740
https://doi.org/10.1002/jctb.4253
11 Wang M X, Zhang Q L, Yao S J. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chemical Engineering Journal, 2015, 259: 837–844
https://doi.org/10.1016/j.cej.2014.08.003
12 Zhang Q L, Lu T, Bai D M, Lin D Q, Yao S J. Self-immobilization of a magnetic biosorbent and magnetic induction heated dye adsorption processes. Chemical Engineering Journal, 2016, 284: 972–978
https://doi.org/10.1016/j.cej.2015.09.047
13 Ahmaruzzaman M, Ahmed M J K, Begum S. Remediation of eriochrome black eriochrome black T-contaminated aqueous solutions utilizing H3PO4-modified berry leaves as a non-conventional adsorbent. Desalination and Water Treatment, 2015, 56(6): 1507–1519
https://doi.org/10.1080/19443994.2014.950995
14 Barka N, Abdennouri M, El Makhfouk M. Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(2): 320–326
https://doi.org/10.1016/j.jtice.2010.07.004
15 de Luna M D G, Flores E D, Genuino D A D, Futalan C M, Wan M W. Adsorption of eriochrome black T (EBT) dye using activated carbon prepared from waste rice hulls-optimization, isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 646–653
https://doi.org/10.1016/j.jtice.2013.01.010
16 Canizares P, Martinez F, Lobato J, Rodrigo M A. Electrochemically assisted coagulation of wastes polluted with eriochrome black T. Industrial & Engineering Chemistry Research, 2006, 45(10): 3474–3480
https://doi.org/10.1021/ie051432r
17 Namasivayam C, Kavitha D. Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 2002, 54(1): 47–58
https://doi.org/10.1016/S0143-7208(02)00025-6
18 Zhang Q L, Wu Q X, Lin D Q, Yao S J. Effect and mechanism of sodium chloride on the formation of chitosan-cellulose sulfate-tripolyphosphate crosslinked beads. Soft Matter, 2013, 9(43): 10354–10363
https://doi.org/10.1039/c3sm52051j
19 Akar T, Arslan S, Akar S T. Utilization of Thamnidium elegans fungal culture in environmental cleanup: A reactive dye biosorption study. Ecological Engineering, 2013, 58: 363–370
https://doi.org/10.1016/j.ecoleng.2013.06.026
20 Haupa K, Bil A, Mielke Z. Donor-acceptor complexes between ammonia and sulfur trioxide: An FTIR and computational study. Journal of Physical Chemistry A, 2015, 119(43): 10724–10734
https://doi.org/10.1021/acs.jpca.5b07936
21 Xin B P, Xia Y T, Zhang Y, Aslam H, Liu C H, Chen S. A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution. Bioresource Technology, 2012, 105: 100–105
https://doi.org/10.1016/j.biortech.2011.11.062
[1] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[2] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[3] Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers[J]. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
[4] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[5] Mohammad Banimahd KIEVANI, Milad EDRAKI. Synthesis, characterization and assessment thermal properties of clay based nanopigments[J]. Front. Chem. Sci. Eng., 2015, 9(1): 40-45.
[6] Li XU, Zhi GUO, Lishun DU. Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes[J]. Front Chem Sci Eng, 2013, 7(3): 338-346.
[7] Xiaolei LI, Chunying ZHU, Youguang MA. Removal of SO2 using ammonium bicarbonate aqueous solution as absorbent in a bubble column reactor[J]. Front Chem Sci Eng, 2013, 7(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed