Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 529-536    https://doi.org/10.1007/s11705-017-1645-z
RESEARCH ARTICLE
Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer
Pengwei Zhang1,2, Junxiao Ye1, Ergang Liu1,2, Lu Sun2, Jiacheng Zhang2, Seung Jin Lee3, Junbo Gong1,2(), Huining He2(), Victor C. Yang1,4()
1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostic), Tianjin Medical University, Tianjin 300072, China
3. Department of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
4. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, MI 48109-1065, USA
 Download: PDF(290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An anticancer drug delivery system consisting of DNA nanoparticles synthesized by rolling circle amplification (RCA) was developed for prostate cancer membrane antigen (PSMA) targeted cancer therapy. The template of RCA was a DNA oligodeoxynucleotide coded with PSMA-targeted aptamer, drug-loading domain, primer binding site and pH-sensitive spacer. Anticancer drug doxorubicin, as the model drug, was loaded into the drug-loading domain (multiple GC-pair sequences) of the DNA nanoparticles by intercalation. Due to the integrated pH-sensitive spacers in the nanoparticles, in an acidic environment, the cumulative release of doxorubicin was far more than the cumulative release of the drug in the normal physiological environment. In cell uptake experiments, treated with doxorubicin loaded DNA nanoparticles, PSMA-positive C4-2 cells could take up more doxorubicin than PSMA-null PC-3 cells. The prepared DNA nanoparticles showed the potential as drug delivery system for PSMA targeting prostate cancer therapy.

Keywords aptamer      DNA nanoparticles      rolling circle amplification      doxorubicin      drug delivery      pH sensitive     
Corresponding Author(s): Junbo Gong,Huining He,Victor C. Yang   
Just Accepted Date: 07 April 2017   Online First Date: 10 May 2017    Issue Date: 06 November 2017
 Cite this article:   
Pengwei Zhang,Junxiao Ye,Ergang Liu, et al. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1645-z
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/529
Fig.1  Scheme 1Synthesis of DNA nanoparticles
Strands Sequences (5′→3′)
Template (5′-Phosphate-)AAAAAAAA GCGCAGCGCTGCGCA AAAAGCATTGCTATCGTAAGCAGATGACCCAAAACGCAAAAGCGAAAACGCAAGCGCAGCGCTGCGCAAAAAAAAA
Primer TTTTTTTTTTTTTTTTT
SZTI 01 GCGTTTTCGCTTTTGCGTTTTGGGTCATCTGCTTACGATAGCAATGCT
C-SZTI 01 AGCATTGCTATCGTAAGCAGATGACCCAAAACGCAAAAGCGAAAACGC
Tab.1  Sequences of the oligonucleotides used in this studya)
Fig.2  (A) 1.5% agarose gel analysis of the RCA product. Lane 1, DNA ladder; Lane 2, 5′ phosphorylated ssDNA template; Lane 3, the RCA product; (B) stability of DNA nanoparticles. Lane 1, DNA ladder; Lane 2, non-treated DNA nanoparticles; Lane 3, DNA nanoparticles treated with RPMI Medium 1640 basic containing 10% FBS for 24 h; Lane 4, DNA nanoparticles treated with RPMI Medium 1640 basic containing 10% FBS for 48 h
Fig.3  (A) Confocal laser-scanning microscopy images visualizing DNA nanoparticles incorporated with Cy3-modified dUTPs during rolling circle amplification; (B) confocal laser-scanning microscopy images visualizing DNA nanoparticles stained with GoodviewTM; (C) polarized optical microscopy image displaying the property of birefringence of nanoparticles; (D) AFM image revealing the morphology of nanoparticles
Fig.4  Concentration/size graph for three independent tests by Nanosight NS 300. Separately, line ‘1’, line ‘2’ and line ‘3’ indicates one test. Line ‘average’ indicates the average concentration/size distribution of the sample
Fig.5  (A) FE-SEM image of DNA nanoparticles; (B) TEM images of DNA nanoparticles (the inserted image shows more detailed structrue of the nanoparticles)
Fig.6  Fluorescence spetra of doxorubicin (10 ng/µL) incubated with increasing concentration of DNA nanoparticles (The concentrations of particles (×103 particles/mL) are shown by values from top to bottom)
DNA /(ng·µL ?1) Doxorubicin /(ng·µL ?1) EE /wt% LC /wt%
1383 489 62.1±0.3 18.0±0.7
555 489 60.3±0.2 34.7±0.6
309 489 48.7±0.2 43.5±0.1
Tab.2  The influence of feed ratio of DNA/doxorubicin on LC and EE
Fig.7  Doxorubicin release from doxorubicin loaded DNA nanoparticles at pH 5.4 and 7.4. Bars represent mean±SD (n= 5)
Fig.8  Confocal laser scanning microscopy images displaying the intracellular signaling of drug unloading and selective cell up-take by DNA nanoparticles. PSMA-positive C4-2 cells (C and D) and PSMA-null PC-3 cells (A and B) were treated with free doxorubicin (A and C; 10 ng/µL) and doxorubicin loaded DNA nanoparticles (B and D; 10 ng/µL doxorubicin equivalents), following by DAPI staining
1 ChenW, ZhengR, BaadeP D, Zhang S, ZengH , BrayF, JemalA, YuX Q, He J. Cancer statistics in China, 2015.CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132
https://doi.org/10.3322/caac.21338
2 BillinghamM E, Bristow M R, GlatsteinE , MasonJ W, MasekM A, DanielsJ R. Adriamycin cardiotoxicity: Endomyocardial biopsy evidence of enhancement by irradiation.American Journal of Surgical Pathology, 1977, 1(1): 17–23
https://doi.org/10.1097/00000478-197701010-00002
3 Brannon-PeppasL, Blanchette J O. Nanoparticle and targeted systems for cancer therapy.Advanced Drug Delivery Reviews, 2004, 56(11): 1649–1659
https://doi.org/10.1016/j.addr.2004.02.014
4 GhoshA, HestonW D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.Journal of Cellular Biochemistry, 2004, 91(3): 528–539
https://doi.org/10.1002/jcb.10661
5 FarokhzadO C, JonS, KhademhosseiniA , TranT N, LavanD A, LangerR. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells.Cancer Research, 2004, 64(21): 7668–7672
https://doi.org/10.1158/0008-5472.CAN-04-2550
6 KanwarJ, RoyK, MaremandaN, Subramanian K, VeeduR , BawaR. Nucleic acid-based aptamers: Applications, development and clinical trials.Current Medicinal Chemistry, 2015, 22(21): 2539–2557
https://doi.org/10.2174/0929867322666150227144909
7 JiaR, WangT, JiangQ, Wang Z, SongC , DingB. Self-assembled DNA nanostructures for drug delivery.Chinese Journal of Chemistry, 2016, 34(3): 265–272
https://doi.org/10.1002/cjoc.201500838
8 ZhuG, NiuG, ChenX. Aptamer-drug conjugates.Bioconjugate Chemistry, 2015, 26(11): 2186–2197
https://doi.org/10.1021/acs.bioconjchem.5b00291
9 StoltenburgR, Reinemann C, StrehlitzB . SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands.Biomolecular Engineering, 2007, 24(4): 381–403
https://doi.org/10.1016/j.bioeng.2007.06.001
10 ZhuH, LiJ, ZhangX B, Ye M, TanW . Nucleic acid aptamer—mediated drug delivery for targeted cancer therapy.ChemMedChem, 2015, 10(1): 39–45
https://doi.org/10.1002/cmdc.201402312
11 KeefeA D, PaiS, EllingtonA. Aptamers as therapeutics.Nature Reviews. Drug Discovery, 2010, 9(7): 537–550
https://doi.org/10.1038/nrd3141
12 NimjeeS M, Rusconi C P, SullengerB A . Aptamers: An emerging class of therapeutics.Annual Review of Medicine, 2005, 56(1): 555–583
https://doi.org/10.1146/annurev.med.56.062904.144915
13 PalchettiI, Mascini M. Nucleic acid biosensors for environmental pollution monitoring.Analyst (London), 2008, 133(7): 846–854
https://doi.org/10.1039/b802920m
14 LupoldS E, HickeB J, LinY, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen.Cancer Research, 2002, 62(14): 4029–4033
15 DharS, GuF X, LangerR, Farokhzad O C, LippardS J . Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17356–17361
https://doi.org/10.1073/pnas.0809154105
16 BagalkotV, Farokhzad O C, LangerR , JonS. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.Angewandte Chemie International Edition, 2006, 45(48): 8149–8152
https://doi.org/10.1002/anie.200602251
17 LeeI H, AnS, YuM K, Kwon H K, ImS H . Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates.Journal of Controlled Release, 2011, 155(3): 435–441
https://doi.org/10.1016/j.jconrel.2011.05.025
18 TanL, NeohK G, KangE T, Choe W S, SuX . PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells.Macromolecular Bioscience, 2011, 11(10): 1331–1335
https://doi.org/10.1002/mabi.201100173
19 BoyaciogluO, StuartC H, KulikG, Gmeiner W H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages.Mol Therapy-Nucleic Acids, 2013, 2(1): e107
20 StuartC H, SinghR, SmithT L, D’Agostino R Jr, CaudellD , BalajiK C, Gmeiner W H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.Nanomedicine (London), 2016, 11(10): 1207–1222
https://doi.org/10.2217/nnm-2015-0017
21 FireA, XuS Q. Rolling replication of short DNA circles.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4641–4645
https://doi.org/10.1073/pnas.92.10.4641
22 ZhaoW, AliM M, BrookM A, Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids.Angewandte Chemie International Edition, 2008, 47(34): 6330–6337
https://doi.org/10.1002/anie.200705982
23 AliM M, LiF, ZhangZ, Zhang K, KangD K , AnkrumJ A, LeX C, ZhaoW. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine.Chemical Society Reviews, 2014, 43(10): 3324–3341
https://doi.org/10.1039/c3cs60439j
24 RohY H, LeeJ B, ShopsowitzK E , DreadenE C, MortonS W, PoonZ, Hong J, YaminI , BonnerD K, Hammond P T. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.ACS Nano, 2014, 8(10): 9767–9780
https://doi.org/10.1021/nn502596b
25 LeeH Y, JeongH, JungI Y, Jang B, SeoY C , LeeH, LeeH. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels.Advanced Materials, 2015, 27(23): 3513–3517
https://doi.org/10.1002/adma.201500414
26 HamblinG D, Carneiro K M, FakhouryJ F , BujoldK E, Sleiman H F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability.Journal of the American Chemical Society, 2012, 134(6): 2888–2891
https://doi.org/10.1021/ja2107492
27 MeiL, ZhuG, QiuL, Wu C, ChenH , LiangH, CansizS, LvY, ZhangX, TanW. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery.Nano Research, 2015, 8(11): 3447–3460
https://doi.org/10.1007/s12274-015-0841-8
28 LizardiP M, HuangX, ZhuZ, Brayward P, ThomasD C , WardD C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.Nature Genetics, 1998, 19(3): 225–232
https://doi.org/10.1038/898
29 Am HongC, JangB, JeongE H, Jeong H, LeeH . Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.Chemical Communications, 2014, 50(86): 13049–13051
https://doi.org/10.1039/C4CC03834G
30 LvY, HuR, ZhuG, Zhang X, MeiL , LiuQ, QiuL, WuC, TanW. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.Nature Protocols, 2015, 10(10): 1508–1524
https://doi.org/10.1038/nprot.2015.078
31 ZhangL, ZhuG, MeiL, Wu C, QiuL , CuiC, LiuY, TengI T, Tan W. Self-assembled DNA immuno nanoflowers as multivalent CpG nanoagents.ACS Applied Materials & Interfaces, 2015, 7(43): 24069–24074
https://doi.org/10.1021/acsami.5b06987
32 SunW, JiangT, LuY, ReiffM, MoR, GuZ. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.Journal of the American Chemical Society, 2014, 136(42): 14722–14725
https://doi.org/10.1021/ja5088024
33 MalloyA. Count, size and visualize nanoparticles.Materials Today, 2011, 14(4): 170–173
https://doi.org/10.1016/S1369-7021(11)70089-X
34 ZhuG, HuR, ZhaoZ, Chen Z, ZhangX , TanW. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.Journal of the American Chemical Society, 2013, 135(44): 16438–16445
https://doi.org/10.1021/ja406115e
[1] Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4[J]. Front. Chem. Sci. Eng., 2020, 14(5): 880-888.
[2] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[3] Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen. Functional ferritin nanoparticles for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 633-646.
[4] Quanyin Hu, Hunter N. Bomba, Zhen Gu. Engineering platelet-mimicking drug delivery vehicles[J]. Front. Chem. Sci. Eng., 2017, 11(4): 624-632.
[5] Jennica L. Zaro,Wei-Chiang Shen. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery[J]. Front. Chem. Sci. Eng., 2015, 9(4): 407-427.
[6] Tzu-Lan CHANG, Honglei ZHAN, Danni LIANG, Jun F. LIANG. Nanocrystal technology for drug formulation and delivery[J]. Front. Chem. Sci. Eng., 2015, 9(1): 1-14.
[7] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[8] Yeonhee YUN,Byung Kook LEE,Kinam PARK. Controlled drug delivery systems: the next 30 years[J]. Front. Chem. Sci. Eng., 2014, 8(3): 276-279.
[9] Yuwei WANG,David W. Grainger. Barriers to advancing nanotechnology to better improve and translate nanomedicines[J]. Front. Chem. Sci. Eng., 2014, 8(3): 265-275.
[10] Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Front. Chem. Sci. Eng., 2014, 8(3): 253-264.
[11] Michelle TRAN,Chun WANG. Semi-solid materials for controlled release drug formulation: current status and future prospects[J]. Front. Chem. Sci. Eng., 2014, 8(2): 225-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed