Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 328-337    https://doi.org/10.1007/s11705-017-1646-y
RESEARCH ARTICLE
The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams
Min Song1(), Wei Zhang2, Yongsheng Chen3, Jinming Luo3, John C. Crittenden3
1. Key Laboratory of Energy Thermal Conversion and Control (Ministry of Education), School of Energy and Environment, Southeast University, Nanjing 210096, China
2. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
3. Brook Byers Institute for Sustainable System, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0595, USA
 Download: PDF(343 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two types of lignin-based carbon fibers were prepared by electrospinning method. The first was activated with Fe3O4 (LCF-Fe), and the second was not activated with Fe3O4 (LCF). Gas phase adsorption isotherms for toluene on LCF-Fe and LCF were studied. The gas phase adsorption isotherm for 0% RH showed LCF-Fe have about 439 mg/g adsorption capacity which was close to that of commercially available activated carbon (500 mg/g). The Dubinin-Radushkevich equation described the isotherm data very well. Competitive adsorption isotherms between water vapor and toluene were measured for their RH from 0 to 80%. The effect of humidity on toluene gas-phase adsorption was predicted by using the Okazaki et al. model. In addition, a constant pattern homogeneous surface diffusion model (CPHSDM) was used to predict the toluene breakthrough curve of continuous flow-packed columns containing LCF-Fe, and its capacity was 412 mg/g. Our study, which included material characterization, adsorption isotherms, kinetics, the impact of humidity and fixed bed performance modeling, demonstrated the suitability of lignin-based carbon fiber for volatile organic compound removal from gas streams.

Keywords lignin      carbon fiber      electrospinning      toluene      humidity     
Corresponding Author(s): Min Song   
Just Accepted Date: 07 April 2017   Online First Date: 23 May 2017    Issue Date: 23 August 2017
 Cite this article:   
Min Song,Wei Zhang,Yongsheng Chen, et al. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams[J]. Front. Chem. Sci. Eng., 2017, 11(3): 328-337.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1646-y
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/328
Sample A ad/% M ad/% C ad/% H ad/% N ad/% S ad/% O ad/%
Alkali lignin 18.29 10.56 46.80 4.107 0.02 3.887 16.34
Tab.1  The proximate and ultimate analysis of lignina)
Fig.1  The SEM images of lignin carbon fiber in the absence (left) and presence of Fe3O4 (right)
Fig.2  The FTIR spectrum curves of LF, LF-Fe, LCF, and LCF-Fe
Characteristics Adsorbents
LCF LCF-Fe
Pore structure SBET /(m2?g1) 117 1466
Average pore diameter /nm 6.99 2.43
Total volume /(cm 3?g1) 0.20 0.89
Micropore volume /(cm 3?g1) 0.02 0.52
Surface chemistry Elementary analysis C/H/N/O (wt-%) 62.31/4.14/0.56/6.87 67.08/1.54/3.65/2.48
pH PZC 6.87 6.03
Tab.2  Physicochemical characteristics of LCF and LCF-Fe
Fig.3  The surface area versus pore volume computed from the N2 isotherm of LCF-Fe
Fig.4  Pore size distributions of LCF-Fe and LCF. Micropores and mesopores were obtained from Barrett-Joyner-Halenda and HK analysis of the nitrogen desorption branch, respectively
Fig.5  (a) Adsorption isotherm for single toluene on LCF-Fe at 298 K and (b) experimental data for the adsorption of toluene on LCF-Fe
Fig.6  Experimental data for adsorption of toluene in the presence of water vapor compared to thermodynamic model predictions
Fig.7  CPHSDM predictions for toluene breakthrough curves of LCF-Fe and Calgon BPL
Adsorbents Time a) /h Bed volume a) Toluene removed /kg Adsorption capacity /(mg?g 1)
LCL-Fe 946 522023 1566 412
Calgon BPL 74.6 41147 867 228
Tab.3  The adsorptive capacities of LCF-Fe and commercial GACs during the column tests
1/ n Freundlich constant, ?
β affinity coefficient of the adsorbate, ?
p pressure, kPa
po saturated vapor pressure, kPa
q amount adsorbed, mg/g-carbon
R gas constant, cc·mmHg/mol·K
r pore radius, cm, Å
S surface area, m 2/g-carbon
SC surface area of wet surface, m 2/g-carbon
SD surface area of dry surface, m 2/g-carbon
ST total surface area, m 2/g-carbon
T temperature, K
V volume, mL
VC volume of condensed phase, mL/g-carbon
ρ density, g/mL
Subscripts
o solvent
w water
1 adsorption on dry surface
2 dissolution into condensed phase
3 liquid-phase adsorption onto wet suface
εp particle porosity
ε bed porosity
  
1 Lillo-Ródenas M A ,  Cazorla-Amorós D ,  Linares-Solano A . Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767
https://doi.org/10.1016/j.carbon.2005.02.023
2 Gupta V K, Verma  N. Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chemical Engineering Science, 2002, 57(14): 2679–2696
https://doi.org/10.1016/S0009-2509(02)00158-6
3 Das D, Gaur  V, Verma N . Removal of volatile organic compound by activated carbon fiber. Carbon, 2004, 42(14): 2949–2962
https://doi.org/10.1016/j.carbon.2004.07.008
4 Long C, Liu  P, Li Y ,  Li A, Zhang  Q. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environmental Science & Technology, 2011, 45(10): 4506–4512
https://doi.org/10.1021/es104250j
5 Sullivan P, Moate  J, Stone B ,  Atkinson J D ,  Hashisho Z ,  Rood M J . Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals. Adsorption, 2012, 18(3-4): 265–274
https://doi.org/10.1007/s10450-012-9399-x
6 Hashisho Z, Emamipour  H, Rood M J ,  James Hay K ,  Kim B J ,  Thurston D . Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption. Environmental Science & Technology, 2008, 42(24): 9317–9322 
https://doi.org/10.1021/es801285v
7 Foster K L, Fuerman  R G, Economy  J, Larson S M ,  Rood M J . Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chemistry of Materials, 1992, 4(5): 1068–1073
https://doi.org/10.1021/cm00023a026
8 Qiao W M, Huda  M, Song Y ,  Yoon S H ,  Korai Y ,  Mochida I ,  Katou O ,  Hayashi H ,  Kawamoto K . Carbon fibers and films based on biomass resins. Energy & Fuels, 2005, 19(6): 2576–2582
https://doi.org/10.1021/ef050046j
9 Carrott P J M ,  Carrott M M L R . Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98(12): 2301–2312
https://doi.org/10.1016/j.biortech.2006.08.008
10 Hayashi J, Kazehaya  A, Muroyama K ,  Watkinson A P . Preparation of activated carbon from lignin by chemical activation. Carbon, 2000, 38(13): 1873–1878
https://doi.org/10.1016/S0008-6223(00)00027-0
11 Ruiz-Rosas R, Bedia  J, Lallave M ,  Loscertales I G ,  Barrero A ,  Rodríguez-Mirasol J ,  Cordero T . The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon, 2010, 48(3): 696–705
https://doi.org/10.1016/j.carbon.2009.10.014
12 Ahmad J J, Babak  K, Nemat J ,  Roshanak R K ,  Mehdi A ,  Ali A B . Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies. Journal of Industrial and Engineering Chemistry, 2017, 45: 323–333
https://doi.org/10.1016/j.jiec.2016.09.044
13 Chiang Y C, Chiang  P C, Huang  C P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 2001, 39(4): 523–534
https://doi.org/10.1016/S0008-6223(00)00161-5
14 Lordgooei M, Kim  M S. Modeling volatile organic compound sorption in activated carbon. I: Dynamics and single-component equilibrium. Journal of Environmental Engineering, 2004, 130(3): 212–222
https://doi.org/10.1061/(ASCE)0733-9372(2004)130:3(212)
15 Cosnier F, Celzard  A, Furdin G ,  Bégin D ,  Marêché J F . Influence of water on the dynamic adsorption of chlorinated VOCs on active carbon: Relative humidity of the gas phase versus pre-adsorbed water. Adsorption Science and Technology, 2006, 24(3): 215–228
https://doi.org/10.1260/026361706778812871
16 Kim T Y, Kim  S J, Cho  S Y. Effect of relative humidity on the adsorption characteristics of carbon tetrachloride in a fixed bed. Journal of Industrial and Engineering Chemistry, 2004, 10(2): 188–195
17 Russell B P, LeVan  M D. Coadsorption of organic compounds and water vapor on BPL activated carbon. 3. Ethane, propane, and mixing rules. Industrial & Engineering Chemistry Research, 1997, 36(6): 2380–2389
https://doi.org/10.1021/ie960533+
18 Marban G, Fuertes  A B. Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths. Carbon, 2004, 42(1): 71–81
https://doi.org/10.1016/j.carbon.2003.09.018
19 Kaplan D, Nir  I, Shmueli L . Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon. Carbon, 2006, 44(15): 3247–3254
https://doi.org/10.1016/j.carbon.2006.06.036
20 Ryu Y K, Lee  H J, Yoo  H K, Lee  H C. Adsorption equilibria of toluene and gasoline vapors on activated carbon. Journal of Chemical & Engineering Data, 2002, 47(5): 1222–1225
https://doi.org/10.1021/je020044i
21 El-Sharkawy I I ,  He J M ,  Ng K C ,  Yap C, Saha  B B. Adsorption equilibrium and kinetics of gasoline vapors onto carbon-based adsorbents. Journal of Chemical & Engineering Data, 2007, 53(1): 41–47
https://doi.org/10.1021/je700310w
22 Brosillon S, Manero  M H, Foussard  J N. Mass transfer in VOC adsorption on zeolite: Experimental and Theoretical Breakthrough Curves. Environmental Science & Technology, 2001, 35(17): 3571–3575
https://doi.org/10.1021/es010017x
23 Díez N, Álvarez  P, Granda M ,  Blanco C ,  Santamaría R ,  Menéndez R . A novel approach for the production of chemically activated carbon fibers. Chemical Engineering Journal, 2015, 260: 463–468
https://doi.org/10.1016/j.cej.2014.08.104
24 Song M, Jin  B, Xiao R ,  Yang L, Wu  Y M, Zhong  Z P, Huang  Y J. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 2013, 48: 250–256
https://doi.org/10.1016/j.biombioe.2012.11.007
25 Yun J H, Hwang  K Y, Choi  D K. Adsorption of benzene and toluene vapors on activated carbon fiber at 298, 323, and 348 K. Journal of Chemical & Engineering Data, 1998, 43(5): 843–845
https://doi.org/10.1021/je980069a
26 Wood G O. Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations: A review with compilations and correlations. Carbon, 2001, 39(3): 343–356
https://doi.org/10.1016/S0008-6223(00)00128-7
27 Stoeckli F, Lavanchy  A. The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon, 2000, 38(3): 475–477
https://doi.org/10.1016/S0008-6223(99)00265-1
28 Crittenden J C ,  Rigg T J ,  Perram D L ,  Tang S R ,  Hand D W . Predicting gas-phase adsorption equilibria of volatile organics and humidity. Journal of Environmental Engineering, 1989, 115(3): 560–573
https://doi.org/10.1061/(ASCE)0733-9372(1989)115:3(560)
29 Okazaki M, Tamon  H, Toei R . Prediction of binary adsorption equilibria of solvent and water vapor on activated carbon. Journal of Chemical Engineering of Japan, 1978, 11(3): 209–215
https://doi.org/10.1252/jcej.11.209
30 Defay R, Prigogine  I, Bellemans A . Surface Tension and Adsorption.New York: Longman, 1966
31 Crittenden J C ,  Cartright P D ,  Rick B, Tang  S R, Perram  D L. An Evaluation of the Technical Feasibility of the Air-Stripping Solvent Recovery Process.Denver: American Water Works Association Research Foundation, 1987
[1] FCE-16072-OF-SM_suppl_1 Download
[1] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[2] Longli Bo, Shaoyuan Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Front. Chem. Sci. Eng., 2019, 13(2): 385-392.
[3] Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
[4] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[5] Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Front. Chem. Sci. Eng., 2018, 12(1): 103-112.
[6] Zhejun PAN. Modeling of coal swelling induced by water vapor adsorption[J]. Front Chem Sci Eng, 2012, 6(1): 94-103.
[7] Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
[8] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
[9] Mingtao RUN, Hongzan SONG, Yanping HAO. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)[J]. Front Chem Eng Chin, 2009, 3(3): 255-264.
[10] YANG Zehui, OU Encai, WANG Yunan, PENG Li, WANG Jiaqiang, YIN Lihui. Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde[J]. Front. Chem. Sci. Eng., 2008, 2(3): 296-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed