Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 647-662    https://doi.org/10.1007/s11705-017-1649-8
REVIEW ARTICLE
Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications
Xiaobin Jiang1, Linghan Tuo1, Dapeng Lu1, Baohong Hou2, Wei Chen2, Gaohong He1()
1. State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, National Engineering Research Center of Industrial Crystallization Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(901 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membrane distillation crystallization (MDC) is a promising hybrid separation process that has been applied to seawater desalination, brine treatment and wastewater recovery. In recent years, great progress has been made in MDC technologies including the promotion of nucleation and better control of crystallization and crystal size distribution. These advances are useful for the accurate control of the degree of supersaturation and for the control of the nucleation kinetic processes. This review focuses on the development of MDC process models and on crystallization control strategies. In addition, the most important innovative applications of MDC in the last five years in crystal engineering and pharmaceutical manufacturing are summarized.

Keywords membrane distillation crystallization      mathematics model      nucleation      separation      hybrid process     
Corresponding Author(s): Gaohong He   
Just Accepted Date: 14 April 2017   Online First Date: 21 June 2017    Issue Date: 06 November 2017
 Cite this article:   
Xiaobin Jiang,Linghan Tuo,Dapeng Lu, et al. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 647-662.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1649-8
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/647
Fig.1  Different membrane distillation operation modules
Fig.2  Dependence of permeate velocity on vapor pressure difference across the membrane [31]
Fig.3  Permeation flux during SMDC operations at various feed temperatures [11]
Fig.4  Experimental and simulated results of the effect of nucleation and crystallization processes on the bulk concentration C and supersaturation S in the crystallizer. (Test 1: Re= 0, without the membrane; Test 2: Re= 1057; Test 3: Re= 2115; Test 4: Re= 4230; Test 5: Re= 6345; Test 6: Re= 10575. PP hollow fiber membrane module utilized in all the tests; Cooling rate= 0.33 K min1, S = 1.05; ?, measured data of metastable zone; ×, experimental data of supersaturation; black solid line, the solidity line of KNO3; dash line, the tendency line of supersolubility of KNO3 in cooling crystallization mode) [43]
Fig.5  Morphology of LiCl crystals obtained via membrane crystallization (a) the orthorhombic polymorphic form; (b) the cubic polymorphic form; (c) distribution of cubic and orthorhombic structures under various feed temperatures and flow rates [53]
Fig.6  Scanning electron microscope (SEM) images of the various hollow fiber membrane structure [44]
Fig.7  DCMD water vapor flux as a function of feed solution temperature for different hollow fiber membranes (Coolant temperature is 20 °C and feed/coolant flow rate is 1 kg·min1) [44]
Fig.8  Dependence of the nucleation work W of KNO3 in aqueous solution at T = 70 °C (343.15 K) and S = 1.01 (HON for spheres and 3D HEN of caps on the PP, PVDF membranes interface with different porosities) [43]
Fig.9  SEM images of used PP (left) and PVDF (right) membranes: (a) images of cross sections of used membrane; salt crystals in the PVDF membrane are indicated with arrows; (b) surface images of the corresponding membranes, crystals within pores and at the surface are evident [59]
Fig.10  (a) Temperature profiles in membrane distillation combined cooling crystallization, (b) CSD of different crystallization time, and (c) crystal habits ( the number marked at the peak in Fig. 15(b): coefficient of variation; dotted line corresponds to the simulated results; image of crystals, × 40 magnified) [43]
Fig.11  Schematic diagram of nucleation detection and MSZW measurement with MDC technology (compared with the laser detection technology) [64]
Fig.12  Porous hollow fiber antisolvent crystallization approaches for the permeation of antisolvent through the pores: (a) crystallization in the shell side and (b) crystallization in the tube side
Fig.13  MDC for high saline wastewater [11]
Fig.14  Simultaneous ethylene glycol (EG), water recovery and crystallization control of saline organic wastewater by MDC (a) experimental setup; (b) permeate flux, EG, and NaCl rejection ratios under repetitive experiments; (c) comparison of crystal particle properties obtained via MDC and vacuum evaporative crystallization (VEC) [15]
Fig.15  Schematic diagram of the hydrogel composite membrane mineralization platform (top left corner) and the representative crystal morphologies obtained by using different substrates: (a) virgin polypropylene (PP), (b) virgin polyethersulphone (PES), (c) AAm/PEGDMA HCMs, (d) HEMA/EGDMA HCMs, (e) SPE/MBA HCMs, (f) MAA/PEGDMA HCMs, (g, h) MAA-co-HEMA/PEGDMA HCMs, (i–l) AA- co-HEMA/EGDMA HCMs.* [84]
Fig.16  Illustration of the important progresses and further research aspects of MDC
1 Sha Z L, Yin Q X, Chen J X. Industrial crystallization: Trends and challenges. Chemical Engineering & Technology, 2013, 36(8): 1286–1286
https://doi.org/10.1002/ceat.201390042
2 Gong J, Wang Y, Du S, Dong W, Yu B, Wu S, Hou J, Wang J. Industrial crystallization in china. Chemical Engineering & Technology, 2016, 39(5): 807–814
https://doi.org/10.1002/ceat.201500718
3 Kiani H, Sun D W. Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology, 2011, 22(8): 407–426
https://doi.org/10.1016/j.tifs.2011.04.011
4 Chandrapala J, Oliver C M, Kentish S, Ashokkumar M. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Reviews International, 2013, 29(1): 67–91
https://doi.org/10.1080/87559129.2012.692140
5 Casado-Coterillo C, Soto J T, Jimaré M, Valencia S, Corma A, Téllez C, Coronas J. Preparation and characterization of ITQ-29/polysulfone mixed-matrix membranes for gas separation: Effect of zeolite composition and crystal size. Chemical Engineering Science, 2012, 73: 116–122
https://doi.org/10.1016/j.ces.2012.01.024
6 Narducci O, Jones A G. Seeding in situ the cooling crystallization of adipic acid using ultrasound. Crystal Growth & Design, 2012, 12(4): 1727–1735
https://doi.org/10.1021/cg200677p
7 Lakerveld R, Verzijden N G, Kramer H, Jansens P, Grievink J. Application of ultrasound for start-up of evaporative batch crystallization of ammonium sulfate in a 75-L crystallizer. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(12): 3367–3377
https://doi.org/10.1002/aic.12553
8 Nguyen T N P, Kim K J. Transformation of hemipentahydrate to monohydrate of risedronate monosodium by seed crystallization in solution. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(12): 3385–3394
https://doi.org/10.1002/aic.12542
9 Soare A, Dijkink R, Pascual M R, Sun C, Cains P W, Lohse D, Stankiewicz A I, Kramer H J M. Crystal nucleation by laser-induced cavitation. Crystal Growth & Design, 2011, 11(6): 2311–2316
https://doi.org/10.1021/cg2000014
10 Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Desalination, 2012, 287: 2–18
https://doi.org/10.1016/j.desal.2011.08.027
11 Edwie F, Chung T S. Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine. Chemical Engineering Science, 2013, 98: 160–172
https://doi.org/10.1016/j.ces.2013.05.008
12 Onsekizoglu B P. Potential of membrane distillation for production of high quality fruit juice concentrate. Critical Reviews in Food Science and Nutrition, 2015, 55(8): 1098–1113
https://doi.org/10.1080/10408398.2012.685116
13 Ji X, Curcio E, Al Obaidani S, Di Profio G, Fontananova E, Drioli E. Membrane distillation-crystallization of seawater reverse osmosis brines. Separation and Purification Technology, 2010, 71(1): 76–82
https://doi.org/10.1016/j.seppur.2009.11.004
14 Susanto H. Towards practical implementations of membrane distillation. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 139–150
https://doi.org/10.1016/j.cep.2010.12.008
15 Lu D, Li P, Xiao W, He G, Jiang X. Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AIChE Journal. American Institute of Chemical Engineers, 2016, 63(6): doi:10.1002/aic.15581
16 Creusen R J M, van Medevoort J, Roelands C P M, van Renesse van Duivenbode J A D. Brine treatment by a membrane distillation-crystallization (MDC) process. Procedia Engineering, 2012, 44: 1756–1759
https://doi.org/10.1016/j.proeng.2012.08.937
17 Meng S, Hsu Y C, Ye Y, Chen V. Submerged membrane distillation for inland desalination applications. Desalination, 2015, 361: 72–80
https://doi.org/10.1016/j.desal.2015.01.038
18 Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Current Opinion in Chemical Engineering, 2012, 1(2): 1–5
https://doi.org/10.1016/j.coche.2012.03.005
19 Ji Z, Wang J, Yin Z, Hou D, Luan Z. Effect of microwave irradiation on typical inorganic salts crystallization in membrane distillation process. Journal of Membrane Science, 2014, 455: 24–30
https://doi.org/10.1016/j.memsci.2013.12.064
20 Kim J H, Park S H, Lee M J, Lee S M, Lee W H, Lee K H, Kang N R, Jo H J, Kim J F, Drioli E, et al.. Thermally rearranged polymer membranes for desalination. Energy & Environmental Science, 2016, 9(3): 878–884
https://doi.org/10.1039/C5EE03768A
21 Gianluca Di Profio E C, Serena F, Carmen S, Enrico D. Effect of supersaturation control and heterogeneous nucleation on porous membrane surfaces in the crystallization of L-glutamic acid polymorphs. Crystal Growth & Design, 2009, 9(5): 2179–2186
https://doi.org/10.1021/cg800838b
22 Kuhn J, Lakerveld R, Kramer H J M, Grievink J, Jansens P J. Characterization and dynamic optimization of membrane-assisted crystallization of adipic acid. Industrial & Engineering Chemistry Research, 2009, 48(11): 5360–5369
https://doi.org/10.1021/ie802010z
23 Wang P, Chung T S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56
https://doi.org/10.1016/j.memsci.2014.09.016
24 Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and its control in membrane distillation — A review. Journal of Membrane Science, 2015, 475: 215–244
https://doi.org/10.1016/j.memsci.2014.09.042
25 Warsinger D M, Swaminathan J, Guillen-Burrieza E, Arafat H A, Lienhard V J H. Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, 2015, 356: 294–313
https://doi.org/10.1016/j.desal.2014.06.031
26 Zhang Y, Peng Y, Ji S, Li Z, Chen P. Review of thermal efficiency and heat recycling in membrane distillation processes. Desalination, 2015, 367: 223–239
https://doi.org/10.1016/j.desal.2015.04.013
27 Pantoja C E, Nariyoshi Y N, Seckler M M. Membrane distillation crystallization applied to brine desalination: A hierarchical design procedure. Industrial & Engineering Chemistry Research, 2015, 54(10): 2776–2793
https://doi.org/10.1021/ie504695p
28 Srisurichan S, Jiraratananon R, Fane A. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, 277(1-2): 186–194
https://doi.org/10.1016/j.memsci.2005.10.028
29 Khayet M. Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science, 2011, 164(1-2): 56–88
https://doi.org/10.1016/j.cis.2010.09.005
30 Anisi F, Thomas K M, Kramer H J M. Membrane-assisted crystallization: Membrane characterization, modelling and experiments. Chemical Engineering Science, 2017, 158: 277–286
https://doi.org/10.1016/j.ces.2016.10.036
31 Koo J, Lee S, Choi J S, Hwang T M. Theoretical analysis of different membrane distillation modules. Desalination and Water Treatment, 2014, 54(4-5): 862–870
https://doi.org/10.1080/19443994.2014.927801
32 Chen G, Lu Y, Krantz W B, Wang R, Fane A G. Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. Journal of Membrane Science, 2014, 450: 1–11
https://doi.org/10.1016/j.memsci.2013.08.034
33 Shirazi M M A, Kargari A, Ismail A F, Matsuura T. Computational fluid dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives. Desalination, 2016, 377: 73–90
https://doi.org/10.1016/j.desal.2015.09.010
34 You W T, Xu Z L, Dong Z Q, Zhang M. Vacuum membrane distillation-crystallization process of high ammonium salt solutions. Desalination and Water Treatment, 2015, 55(2): 368–380
https://doi.org/10.1080/19443994.2014.922499
35 Cuellar M C, Herreilers S N, Straathof A J J, Heijnen J J, van der Wielen L A M. Limits of operation for the integration of water removal by membranes and crystallization of l-phenylalanine. Industrial & Engineering Chemistry Research, 2009, 48(3): 1566–1573
https://doi.org/10.1021/ie8012659
36 Rubbo M. Basic concepts in crystal growth. Crystal Research and Technology, 2013, 48(10): 676–705
https://doi.org/10.1002/crat.201200702
37 Kashchiev D, van Rosmalen G M. Review: Nucleation in solutions revisited. Crystal Research and Technology, 2003, 38(78): 555–574
https://doi.org/10.1002/crat.200310070
38 Mark Roelands C P. Joop H ter Horst, Herman J M K, Jansens P J. Analysis of nucleation rate measurements in precipitation processes. Crystal Growth & Design, 2006, 6(6): 1380–1392
https://doi.org/10.1021/cg050678w
39 Guan G, Wang R, Wicaksana F, Yang X, Fane A G. Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation. Industrial & Engineering Chemistry Research, 2012, 51(41): 13405–13413
https://doi.org/10.1021/ie3002183
40 Chen G, Lu Y, Yang X, Wang R, Fane A G. Quantitative study on crystallization-induced scaling in high-concentration direct-contact membrane distillation. Industrial & Engineering Chemistry Research, 2014, 53(40): 15656–15666
https://doi.org/10.1021/ie501610q
41 Vetter T, Iggland M, Ochsenbein D R, Hänseler F S, Mazzotti M. Modeling nucleation, growth, and Ostwald ripening in crystallization processes: A comparison between population balance and kinetic rate equation. Crystal Growth & Design, 2013, 13(11): 4890–4905
https://doi.org/10.1021/cg4010714
42 Efrem C, Enrica F, Gianluca Di P, Drioli E. Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. Journal of Physical Chemistry B, 2006, 110(25): 12438–12445
https://doi.org/10.1021/jp061531y
43 Jiang X, Lu D, Xiao W, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(3): 829–841
https://doi.org/10.1002/aic.15069
44 Francis L, Ghaffour N, Al-Saadi A S, Amy G. Performance of different hollow fiber membranes for seawater desalination using membrane distillation. Desalination and Water Treatment, 2014, 55(10): 2786–2791
https://doi.org/10.1080/19443994.2014.946723
45 Yu W, Graham N, Yang Y, Zhou Z, Campos L C. Effect of sludge retention on UF membrane fouling: The significance of sludge crystallization and EPS increase. Water Research, 2015, 83: 319–328
https://doi.org/10.1016/j.watres.2015.06.049
46 He X, Hägg M B. Structural, kinetic and performance characterization of hollow fiber carbon membranes. Journal of Membrane Science, 2012, 390-391: 23–31
https://doi.org/10.1016/j.memsci.2011.10.052
47 Edwie F, Chung T S. Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization. Journal of Membrane Science, 2012, 421-422: 111–123
https://doi.org/10.1016/j.memsci.2012.07.001
48 Nakoa K, Date A, Akbarzadeh A. A research on water desalination using membrane distillation. Desalination and Water Treatment, 2014, 56(10): 2618–2630
https://doi.org/10.1080/19443994.2014.972731
49 Boucif N, Roizard D, Corriou J P, Favre E. To what extent does temperature affect absorption in gas-liquid hollow fiber membrane contactors? Separation Science and Technology, 2014, 50(9): 1331–1343
https://doi.org/10.1080/01496395.2014.969807
50 Al Obaidani S, Curcio E, Di Profio G, Drioli E. The role of membrane distillation/crystallization technologies in the integrated membrane system for seawater desalination. Desalination and Water Treatment, 2012, 10(1-3): 210–219
https://doi.org/10.5004/dwt.2009.923
51 Li W, Van der Bruggen B, Luis P. Integration of reverse osmosis and membrane crystallization for sodium sulphate recovery. Chemical Engineering and Processing: Process Intensification, 2014, 85: 57–68
https://doi.org/10.1016/j.cep.2014.08.003
52 Hasanoğlu A, Rebolledo F, Plaza A, Torres A, Romero J. Effect of the operating variables on the extraction and recovery of aroma compounds in an osmotic distillation process coupled to a vacuum membrane distillation system. Journal of Food Engineering, 2012, 111(4): 632–641
https://doi.org/10.1016/j.jfoodeng.2012.03.004
53 Quist-Jensen C A, Ali A, Mondal S, Macedonio F, Drioli E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. Journal of Membrane Science, 2016, 505: 167–173
https://doi.org/10.1016/j.memsci.2016.01.033
54 Pantoja C E, Nariyoshi Y N, Seckler M M. Membrane distillation crystallization applied to brine desalination: Additional design criteria. Industrial & Engineering Chemistry Research, 2016, 55(4): 1004–1012
https://doi.org/10.1021/acs.iecr.5b03807
55 Pangarkar B L, Sane M G, Parjane S B, Guddad M. Status of membrane distillation for water and wastewater treatment — A review. Desalination and Water Treatment, 2013, 52(28-30): 5199–5218
https://doi.org/10.1080/19443994.2013.808422
56 Kim Y J, Jung J, Lee S, Sohn J. Modeling fouling of hollow fiber membrane using response surface methodology. Desalination and Water Treatment, 2014, 54(4-5): 966–972
https://doi.org/10.1080/19443994.2014.912593
57 Duong H C, Cooper P, Nelemans B, Cath T Y, Nghiem L D. Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, 2015, 374: 1–9
https://doi.org/10.1016/j.desal.2015.07.009
58 Camacho L, Dumée L, Zhang J, Li J D, Duke M, Gomez J, Gray S. Advances in membrane distillation for water desalination and purification applications. Water (Basel), 2013, 5(1): 94–196
https://doi.org/10.3390/w5010094
59 Boubakri A, Hafiane A, Al Tahar Bouguecha S. Nitrate removal from aqueous solution by direct contact membrane distillation using two different commercial membranes. Desalination and Water Treatment, 2014, 56(10): 2723–2730
https://doi.org/10.1080/19443994.2014.981408
60 Feng X, Jiang L Y, Song Y. Titanium white sulfuric acid concentration by direct contact membrane distillation. Chemical Engineering Journal, 2016, 285: 101–111
https://doi.org/10.1016/j.cej.2015.09.064
61 Caridi A, Di Profio G, Caliandro R, Guagliardi A, Curcio E, Drioli E. Selecting the desired solid form by membrane crystallizers: Crystals or cocrystals. Crystal Growth & Design, 2012, 12(9): 4349–4356
https://doi.org/10.1021/cg300702t
62 Byrne P, Fournaison L, Delahaye A, Oumeziane Y A, Serres L, Loulergue P, Szymczyk A, Mugnier D, Malaval J L, Bourdais R, et al.. A review on the coupling of cooling, desalination and solar photovoltaic systems. Renewable & Sustainable Energy Reviews, 2015, 47: 703–717
https://doi.org/10.1016/j.rser.2015.03.083
63 Meng S, Ye Y, Mansouri J, Chen V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2014, 463: 102–112
https://doi.org/10.1016/j.memsci.2014.03.027
64 Jiang X, Ruan X, Xiao W, Lu D, He G. A novel membrane distillation response technology for nucleation detection, metastable zone width measurement and analysis. Chemical Engineering Science, 2015, 134: 671–680
https://doi.org/10.1016/j.ces.2015.05.030
65 Diao Y, Helgeson M E, Siam Z A, Doyle P S, Myerson A S, Hatton T A, Trout B L. Nucleation under soft confinement: Role of polymer-solute interactions. Crystal Growth & Design, 2012, 12(1): 508–517
https://doi.org/10.1021/cg201434r
66 Curcio E, López-Mejías V, Di Profio G, Fontananova E, Drioli E, Trout B L, Myerson A S. Regulating nucleation kinetics through molecular interactions at the polymer-solute interface. Crystal Growth & Design, 2014, 14(2): 678–686
https://doi.org/10.1021/cg4015543
67 Nguyen A T, Kang J, Kim W S. Noncommon ion effect on phase transformation of guanosine 5-monophosphate disodium in antisolvent crystallization. Industrial & Engineering Chemistry Research, 2015, 54(21): 5784–5792
https://doi.org/10.1021/acs.iecr.5b00813
68 Yang Y, Nagy Z K. Combined cooling and antisolvent crystallization in continuous mixed suspension, mixed product removal cascade crystallizers: Steady-state and startup optimization. Industrial & Engineering Chemistry Research, 2015, 54(21): 5673–5682
https://doi.org/10.1021/ie5034254
69 Zhou S, Zheng B, Shimotsuma Y, Lu Y, Guo Q, Nishi M, Shimizu M, Miura K, Hirao K, Qiu J. Heterogeneous-surface-mediated crystallization control. NPG Asia Materials, 2016, 8(3): e245
https://doi.org/10.1038/am.2016.15
70 Catherine C, Roland K, Denis M, Puel F. Coupling between membrane processes and crystallization operations. Industrial & Engineering Chemistry Research, 2010, 49(12): 5489–5495
https://doi.org/10.1021/ie901824x
71 Chen D, Singh D, Sirkar K K, Pfeffer R. Porous hollow fiber membrane-based continuous technique of polymer coating on submicron and nanoparticles via antisolvent crystallization. Industrial & Engineering Chemistry Research, 2015, 54(19): 5237–5245
https://doi.org/10.1021/acs.iecr.5b00155
72 Quist-Jensen C A, Macedonio F, Drioli E. Membrane crystallization for salts recovery from brine — an experimental and theoretical analysis. Desalination and Water Treatment, 2015,57(16): 7593–7603 
73 Lu D, Li P, Xiao W, He G, Jiang X. Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AIChE Journal. American Institute of Chemical Engineers, 2016, 63(6): 2187–2197: 
https://doi.org/10.1002/aic.15581
74 Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Current Opinion in Chemical Engineering, 2012, 1(2): 178–182
https://doi.org/10.1016/j.coche.2012.03.005
75 Turek M, Mitko K, Piotrowski K, Dydo P, Laskowska E, Jakóbik-Kolon A. Prospects for high water recovery membrane desalination. Desalination, 2017, 401: 180–189
https://doi.org/10.1016/j.desal.2016.07.047
76 Yu X, Ulrich J, Wang J. Crystallization and stability of different protein crystal modifications: A case study of lysozyme. Crystal Research and Technology, 2015, 50(2): 179–187
https://doi.org/10.1002/crat.201400424
77 Studart A R. Towards high-performance bioinspired composites. Advanced Materials, 2012, 24(37): 5024–5044
https://doi.org/10.1002/adma.201201471
78 Bayerlein B, Zaslansky P, Dauphin Y, Rack A, Fratzl P, Zlotnikov I. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nature Materials, 2014, 13(12): 1102–1107
https://doi.org/10.1038/nmat4110
79 Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14(1): 23–36
https://doi.org/10.1038/nmat4089
80 Hu Y, Chen Z, Fu Y, He Q, Jiang L, Zheng J, Gao Y, Mei P, Chen Z, Ren X. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers. Nature Communications, 2015, 6: 6634
https://doi.org/10.1038/ncomms7634
81 Vekilov P G. Nucleation of protein condensed phases. Reviews in Chemical Engineering, 2011, 27(1-2): 1–13
https://doi.org/10.1515/revce.2011.003
82 Diao Y, Whaley K E, Helgeson M E, Woldeyes M A, Doyle P S, Myerson A S, Hatton T A, Trout B L. Gel-induced selective crystallization of polymorphs. Journal of the American Chemical Society, 2012, 134(1): 673–684
https://doi.org/10.1021/ja210006t
83 Profio G D, Polino M, Nicoletta F P, Belviso B D, Caliandro R, Fontananova E, Filpo G D, Curcio E, Drioli E. Tailored hydrogel membranes for efficient protein crystallization. Advanced Functional Materials, 2014, 24(11): 1582–1590
https://doi.org/10.1002/adfm.201302240
84 Di Profio G, Salehi S M, Caliandro R, Guccione P, Nico G, Curcio E, Fontananova E. Bioinspired synthesis of CaCO3 superstructures through a novel hydrogel composite membranes mineralization platform: A comprehensive view. Advanced Materials, 2016, 28(4): 610–616
https://doi.org/10.1002/adma.201504608
85 Myerson A S, Trout B L. Nucleation from solution. Science, 2013, 341(6148): 855–856
https://doi.org/10.1126/science.1243022
86 Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS Journal, 2013, 280(24): 6456–6497
https://doi.org/10.1111/febs.12580
[1] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[2] Hongzhe Hou, Yiqing Luo. A novel method for generating distillation configurations[J]. Front. Chem. Sci. Eng., 2020, 14(5): 834-846.
[3] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[4] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[5] Xin Gao, Dandan Shu, Xingang Li, Hong Li. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 759-771.
[6] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[7] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[8] Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
[9] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
[10] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[11] Baojun Li,Gaohong He,Xiaobin Jiang,Yan Dai,Xuehua Ruan. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Front. Chem. Sci. Eng., 2016, 10(2): 255-264.
[12] Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang. Formation of microporous polymeric membranes via thermally induced phase separation: A review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 57-75.
[13] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[14] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[15] Xinwei ZHANG, Shudong ZHANG, Xiaodan SUN, Zequn YIN, Quanjie LIU, Xiwen ZHANG, Qiuxiang YIN. Nucleation and growth mechanism of cefodizime sodium at different solvent compositions[J]. Front Chem Sci Eng, 2013, 7(4): 490-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed