Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 497-507    https://doi.org/10.1007/s11705-017-1652-0
REVIEW ARTICLE
Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: A review
Kevin A. Kovalchik1, Matthew S. MacLennan1, Kerry M. Peru2, John V. Headley1,2, David D.Y. Chen1()
1. Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
2. Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
 Download: PDF(393 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Naphthenic acids are a complex class of thousands of naturally occurring aliphatic and alicyclic carboxylic acids found in oil sands bitumen and in the wastewater generated from bitumen processing. Dozens of analytical methods have been developed for the semi-quantification of total naphthenic acids in water samples. However, different methods can give different results, prompting investigation into the comparability of the many methods. A review of important methodological features for analyzing total naphthenic acids is presented and informs the design of future standard methods for the semi-quantification of total naphthenic acids using mass spectrometry. The design considerations presented are a synthesis of discussions from an Environment and Climate Change Canada (ECCC) led taskforce of 10 laboratory experts from government, industry and academia during April 2016 and subsequent discussions between University of British Columbia and ECCC representatives. Matters considered are: extraction method, solvent, pH, and temperature; analysis instrumentation and resolution; choice of calibration standards; use of surrogate and internal standards; and use of online or offline separation prior to analysis. The design considerations are amenable to both time-of-flight and Orbitrap mass spectrometers.

Keywords total naphthenic acids      environmental samples      oil sands process affected water      polar organics      mass spectrometry     
Corresponding Author(s): David D.Y. Chen   
Just Accepted Date: 14 April 2017   Online First Date: 05 July 2017    Issue Date: 23 August 2017
 Cite this article:   
Kevin A. Kovalchik,Matthew S. MacLennan,Kerry M. Peru, et al. Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: A review[J]. Front. Chem. Sci. Eng., 2017, 11(3): 497-507.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1652-0
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/497
No.FactorsConclusionsRef.
1Definition of total NAsUse the classical definition of NAs[2]
2Extraction phase, pH, temperatureLiquid-liquid extraction at pH 2 and room temperature with DCM as organic phase, or use ENV+ SPE1) [24,26?28]
3Use of surrogate standardsUse isotopically labelled model compounds as surrogate standards[8]
4Minimum resolving power of instrument50000 at m/z 200, acknowledging that potential interferences contribute to method uncertainty[2,6,14,17]
5Use of derivatizationDo not utilize derivatization[19,22,23,29]
6Polarity and mode of ionizationNegative-ion mode ESI[4,30]
7Suitable calibration standard and internal standardUse commercially available Merichem NA mixture and at least one isotopically labelled internal standard[2,8,14]
8Use of on-line or off-line fractionation of sampleEmploy on-line chromatography prior to MS detection[8,17,31,32]
Tab.1  Considerations discussed for the proposal of a standard classical NAs semi-quantification method
Carbon #Z-value
0?2?4?6?8?10?12
Target ion accurate mass /amu
6115.07645113.0608111.04515109.0295107.01385104.9982
7129.0921127.07645125.0608123.04515121.0295119.01385116.9982
8143.10775141.0921139.07645137.0608135.04515133.0295131.01385
9157.1234155.10775153.0921151.07645149.0608147.04515145.0295
10171.13905169.1234167.10775165.0921163.07645161.0608159.04515
11185.1547183.13905181.1234179.10775177.0921175.07645173.0608
12199.17035197.1547195.13905193.1234191.10775189.0921187.07645
13213.186211.17035209.1547207.13905205.1234203.10775201.0921
14227.20165225.186223.17035221.1547219.13905217.1234215.10775
15241.2173239.20165237.186235.17035233.1547231.13905229.1234
16255.23295253.2173251.20165249.186247.17035245.1547243.13905
17269.2486267.23295265.2173263.20165261.186259.17035257.1547
18283.26425281.2486279.23295277.2173275.20165273.186271.17035
19297.2799295.26425293.2486291.23295289.2173287.20165285.186
20311.29555309.2799307.26425305.2486303.23295301.2173299.20165
21325.3112323.29555321.2799319.26425317.2486315.23295313.2173
22339.32685337.3112335.29555333.2799331.26425329.2486327.23295
23353.3425351.32685349.3112347.29555345.2799343.26425341.2486
24367.35815365.3425363.32685361.3112359.29555357.2799355.26425
25381.3738379.35815377.3425375.32685373.3112371.29555369.2799
26395.38945393.3738391.35815389.3425387.32685385.3112383.29555
27409.4051407.38945405.3738403.35815401.3425399.32685397.3112
28423.42075421.4051419.38945417.3738415.35815413.3425411.32685
29437.4364435.42075433.4051431.38945429.3738427.35815425.3425
30451.45205449.4364447.42075445.4051443.38945441.3738439.35815
31465.4677463.45205461.4364459.42075457.4051455.38945453.3738
32479.48335477.4677475.45205473.4364471.42075469.4051467.38945
33493.499491.48335489.4677487.45205485.4364483.42075481.4051
34507.51465505.499503.48335501.4677499.45205497.4364495.42075
35521.5303519.51465517.499515.48335513.4677511.45205509.4364
36535.54595533.5303531.51465529.499527.48335525.4677523.45205
37549.5616547.54595545.5303543.51465541.499539.48335537.4677
38563.57725561.5616559.54595557.5303555.51465553.499551.48335
39577.5929575.57725573.5616571.54595569.5303567.51465565.499
40591.60855589.5929587.57725585.5616583.54595581.5303579.51465
Tab.2  Summary of target ions for classical NA quantification analysisa)
Fig.1  Relative total NAFC extraction using selected solvent systems or SPE. Solvent polarity index is given along the x-axis. Areas represent total area under the TIC curves observed by negative ion electrospray ionization (ESI) Orbitrap MS. Reprinted with permission from [24]. Copyright (2013) Elsevier
Fig.2  Distribution of selected components of NAFC. Extraction using selected solvent systems or SPE was carried out prior to analysis by negative-ion ESI Orbitrap MS. Reprinted with permission from [24]. Copyright (2013) Elsevier
Fig.3  Extracted amounts of selected NAFC classes using six solvents. Extractions were carried out at pH values of (a) 12.0, (b) 8.5, and (c) 2.0. Reprinted with permission from [28]. Copyright (2016) Elsevier
Fig.4  Predicted log DOW values with changing pH for 19 classical NAs. Numbers reference the compounds described in [27] SI. Data taken from [27] supplemental information
Fig.5  Predicted log DOW values with changing temperature for 19 classical NAs. Numbers reference the compounds described in [27] SI. Data taken from [27] supplemental information
Fig.6  Relative abundance of compounds matching the formula CnH2n+ZOx, summed for n= 8 to 30 and Z= 0 to ?12. Reprinted with permission from [2]. Copyright (2010) Elsevier
Fig.7  Bar plots and contour diagrams showing the number of homologues detected for the formula CnH2n+ZOx for: (a) OSPW sample extracted by liquid-liquid extraction and directly injected into FTICR-MS, (b) OSPW sample extracted as in (a) and fractionated by UHPLC prior to FTICR-MS, and (c) combination of two OSPW samples processed as in (b) to compensate for dilution effects. Reprinted with permission from [17]. Copyright (2013) American Chemical Society
1 Frank R A, Fischer K, Kavanagh R, Burnison B K, Arsenault G, Headley J V, Peru K M, Van der Kraak G, Solomon K R. Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environmental Science & Technology, 2009, 43(2): 266–271
2 Grewer D M, Young R F, Whittal R M, Fedorak P M. Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured? Science of the Total Environment, 2010, 408(23): 5997–6010
3 Headley J V, McMartin D W. A review of the occurrence and fate of naphthenic acids in aquatic environments. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(8): 1989–2010
4 Headley J V, Peru K M, Barrow M P. Mass spectrometric characterization of naphthenic acids in environmental samples: A review. Mass Spectrometry Reviews, 2009, 28(1): 121–134
5 Morandi G D, Wiseman S B, Pereira A, Mankidy R, Gault I G M, Martin J W, Giesy J P. Effects-directed analysis of dissolved organic compounds in oil sands process-affected water. Environmental Science & Technology, 2015, 49(20): 12395–12404
6 Headley J V, Peru K M, Mohamed M H, Frank R A, Martin J W, Hazewinkel R R O, Humphries D, Gurprasad N P, Hewitt L M, Muir D C G, et al.Chemical fingerprinting of naphthenic acids and oil sands process waters: A review of analytical methods for environmental samples. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(10): 1145–1163
7 Headley J V, Peru K M, Barrow M P. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil: A review. Mass Spectrometry Reviews, 2016, 35(2): 311–328
8 Brunswick P, Shang D Y, van Aggelen G, Hindle R, Hewitt L M, Frank R A, Haberl M, Kim M. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection. Journal of Chromatography. A, 2015, 1405: 49–71
9 Shang D Y, Kim M, Haberl M, Legzdins A. Development of a rapid liquid chromatography tandem mass spectrometry method for screening of trace naphthenic acids in aqueous environments. Journal of Chromatography. A, 2013, 1278: 98–107
10 Rodgers R P, McKenna A M. Petroleum analysis. Analytical Chemistry, 2011, 83(12): 4665–4687
11 Scott A C, Young R F, Fedorak P M. Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples. Chemosphere, 2008, 73(8): 1258–1264
12 Kavanagh R J, Burnison B K, Frank R A, Solomon K R, Van Der Kraak G. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere, 2009, 76(1): 120–126
13 Mohamed M H, Wilson L D, Headley J V, Peru K M. Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(14): 1700–1705
14 Martin J W, Han X M, Peru K M, Headley J V. Comparison of high- and low-resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid mixtures in oil sands process water. Rapid Communications in Mass Spectrometry, 2008, 22(12): 1919–1924
15 Barrow M P, Witt M, Headley J V, Peru K M. Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 2010, 82(9): 3727–3735
16 Han X M, MacKinnon M D, Martin J W. Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere, 2009, 76(1): 63–70
17 Nyakas A, Han J, Peru K M, Headley J V, Borchers C H. Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation. Environmental Science & Technology, 2013, 47(9): 4471–4479
18 Holowenko F M, MacKinnon M D, Fedorak P M. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry. Water Research, 2002, 36(11): 2843–2855
19 Bataineh M, Scott A C, Fedorak P M, Martin J W. Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation. Analytical Chemistry, 2006, 78(24): 8354–8361
20 Hindle R, Noestheden M, Peru K, Headley J. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry. Journal of Chromatography. A, 2013, 1286: 166–174
21 Smith B E, Rowland S J. A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids. Rapid Communications in Mass Spectrometry, 2008, 22(23): 3909–3927
22 Woudneh M B, Hamilton M C, Benskin J P, Wang G H, McEachern P, Cosgrove J R. A novel derivatization-based liquid chromatography tandem mass spectrometry method for quantitative characterization of naphthenic acid isomer profiles in environmental waters. Journal of Chromatography. A, 2013, 1293: 36–43
23 MacLennan M S, Tie C, Kovalchik K, Peru K M, Zhang X, Headley J V, Chen D D Y. Potential of capillary electrophoresis mass spectrometry for the characterization and monitoring of amine-derivatized naphthenic acids from oil sands process-affected water. Journal of Environmental Sciences (China), 2016, 49: 203–212
24 Headley J V, Peru K M, Fahlman B, Colodey A, McMartin D W. Selective solvent extraction and characterization of the acid extractable fraction of Athabasca oils sands process waters by Orbitrap mass spectrometry. International Journal of Mass Spectrometry, 2013, 345: 104–108
25 Wrona F J, di Cenzo P. Lower athabasca water quality monitoring program: PHASE 1, Athabasca river mainstem and major tributaries. Environment Canada-Environmental Stewardship Branch, 2011, 29-34: 74
26 Barrow M P, Peru K M, McMartin D W, Headley J V. Effects of extraction pH on the Fourier transform ion cyclotron resonance mass spectrometry profiles of Athabasca oil sands process water. Energy & Fuels, 2016, 30(5): 3615–3621
27 Celsie A, Parnis J M, Mackay D. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids. Chemosphere, 2016, 146: 40–50
28 Huang R F, McPhedran K N, Sun N, Chelme-Ayala P, El-Din M G. Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water. Chemosphere, 2016, 146: 472–477
29 Ortiz X, Jobst K J, Reiner E J, Backus S M, Peru K M, McMartin D W, O’Sullivan G, Taguchi V Y, Headley J V. Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 2014, 86(15): 7666–7673
30 Pereira A S, Bhattacharjee S, Martin J W. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry. Environmental Science & Technology, 2013, 47(10): 5504–5513
31 Pereira A S, Martin J W. Exploring the complexity of oil sands process-affected water by high efficiency supercritical fluid chromatography/orbitrap mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29(8): 735–744
32 Ross M S, Pereira A D, Fennell J, Davies M, Johnson J, Sliva L, Martin J W. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry. Environmental Science & Technology, 2012, 46(23): 12796–12805
33 Duncan K D, Letourneau D R, Vandergrift G W, Jobst K, Reiner E, Gill C G, Krogh E T. A semi-quantitative approach for the rapid screening and mass profiling of naphthenic acids directly in contaminated aqueous samples. Journal of Mass Spectrometry, 2016, 51(1): 44–52
34 Duncan K D, Volmer D A, Gill C G, Krogh E T. Rapid screening of carboxylic acids from waste and surface waters by ESI-MS/MS using barium ion chemistry and on-line membrane sampling. Journal of the American Society for Mass Spectrometry, 2016, 27(3): 443–450
35 Headley J V, Peru K M, McMartin D W, Winkler M. Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry. Journal of AOAC International, 2002, 85(1): 182–187
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed