Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 155-161    https://doi.org/10.1007/s11705-017-1655-x
RESEARCH ARTICLE
Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts
Songbo He(), Jeffrey Boom, Rolf van der Gaast, K. Seshan
Catalytic Processes and Materials, Faculty of Science & Technology, University of Twente, 7500 AE Enschede, The Netherlands
 Download: PDF(331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo2C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.

Keywords bio-oil      pyrolysis      hydro-deoxygenation (HDO)      non-noble metal catalysts      hydro-treatment     
Corresponding Author(s): Songbo He   
Just Accepted Date: 14 April 2017   Online First Date: 14 July 2017    Issue Date: 26 February 2018
 Cite this article:   
Songbo He,Jeffrey Boom,Rolf van der Gaast, et al. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1655-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/155
Fig.1  Elemental composition of biomass, and pyrolysis oil in van Krevelen diagram [3]
Fig.2  Pneumatics of pyro-probe/GC-MS setup
SBET /(m2·g?1)Loading /wt-%Calculated carbide loading /wt-%
Al2O3166??
Pt/Al2O31631.0a?
WO3-10/Al2O311811.7b9.9
WO3-30/Al2O39835.5b30.0
MoO3-10/Al2O315114.1c10.1
MoO3-20/Al2O313527.2c19.6
Tab.1  Characterizations of catalysts
Fig.3  SEM morphologies of Al2O3 and the supported catalysts
Fig.4  XRD patterns of Al2O3 and the supported catalysts
Fig.5  Product distribution of HDO of fast pyrolysis oil over Pt/Al2O3 catalysts
Fig.6  Product distribution of HDO of fast pyrolysis oil over Al2O3 supported carbide catalysts
Fig.7  Comparison of hydrocarbons formation over Al2O3 supported Pt and carbide catalysts
1 Venderbosch R H. A critical view on catalytic pyrolysis of biomass. ChemSusChem, 2015, 8(8): 1306–1316
https://doi.org/10.1002/cssc.201500115
2 Nguyen T S, Zabeti M, Lefferts L, Brem G, Seshan K. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresource Technology, 2013, 142: 353–360
https://doi.org/10.1016/j.biortech.2013.05.023
3 Zabeti M. Renewable Fuels via Catalytic Pyrolysis of Lignocellulose. Enschede: University of Twente Press, 2014, 18–29
4 Liu C, Wang H, Karim A, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 2014, 43(22): 7594–7623
https://doi.org/10.1039/C3CS60414D
5 Linck M, Felix L, Marker T, Roberts M. Integrated biomass hydropyrolysis and hydrotreating: A brief review. WIREs Energy and Environment, 2014, 3(6): 575–581
https://doi.org/10.1002/wene.119
6 Ruddy D A, Schaidle J A, Ferrell J R III, Wang J, Moens L, Hensley J E. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chemistry, 2014, 16(2): 454–490
https://doi.org/10.1039/C3GC41354C
7 Zacher A H, Olarte M V, Santosa D M, Elliott D C, Jones S B. A review and perspective of recent bio-oil hydrotreating research. Green Chemistry, 2014, 16(2): 491–515
https://doi.org/10.1039/C3GC41382A
8 Oyama S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. Journal of Catalysis, 2003, 216(1-2): 343–352
https://doi.org/10.1016/S0021-9517(02)00069-6
9 Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181(4099): 547–549
https://doi.org/10.1126/science.181.4099.547
10 Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today, 1992, 15(2): 179–200
https://doi.org/10.1016/0920-5861(92)80175-M
11 Ramanathan S, Oyama S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides. Journal of Physical Chemistry, 1995, 99(44): 16365–16372
https://doi.org/10.1021/j100044a025
12 Szymańska-Kolasa A, Lewandowski M, Sayag C, Djéga-Mariadassou G. Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene. Catalysis Today, 2007, 119(1-4): 7–12
https://doi.org/10.1016/j.cattod.2006.08.021
13 Szymańska-Kolasa A, Lewandowski M, Sayag C, Brodzki D, Djéga-Mariadassou G. Comparison between tungsten carbide and molybdenum carbide for the hydrodenitrogenation of carbazole. Catalysis Today, 2007, 207(119): 35–38
14 Ren H, Chen Y, Huang Y, Deng W, Vlachos D G, Chen J G. Tungsten carbides as selective deoxygenation catalysts: Experimental and computational studies of converting C3 oxygenates to propene. Green Chemistry, 2014, 16(2): 761–769
https://doi.org/10.1039/C3GC41256C
15 Stellwagen D R, Bitter J H. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation. Green Chemistry, 2015, 17(1): 582–593
https://doi.org/10.1039/C4GC01831A
16 Hollak S A W, Gosselink R W, Van Es D S, Bitter J H. Comparison of tungsten and molybdenum carbide catalysts for the hydrodeoxygenation of oleic acid. ACS Catalysis, 2013, 3(12): 2837–2844
https://doi.org/10.1021/cs400744y
17 Michalsky R, Zhang Y J, Medford A J, Peterson A A. Departures from the adsorption energy scaling relations for metal carbide catalysts. Journal of Physical Chemistry C, 2014, 118(24): 13026–13034
https://doi.org/10.1021/jp503756g
18 Xiong K, Lee W S, Bhan A, Chen J G. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran. ChemSusChem, 2014, 7(8): 2146–2149
https://doi.org/10.1002/cssc.201402033
19 Xiong K, Yu W, Chen J G. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces. Applied Surface Science, 2014, 323: 88–95
https://doi.org/10.1016/j.apsusc.2014.06.100
20 McManus J R, Vohs J M. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100). Surface Science, 2014, 630: 16–21
https://doi.org/10.1016/j.susc.2014.06.019
21 Mamède A S, Giraudon J M, Löfberg A, Leclercq L, Leclercq G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene. Applied Catalysis A, General, 2002, 227(1-2): 73–82
https://doi.org/10.1016/S0926-860X(01)00923-1
22 Nagai M, Kurakami T, Omi S. Activity of carbided molybdena-alumina for CO2 hydrogenation. Catalysis Today, 1998, 45(1-4): 235–239
https://doi.org/10.1016/S0920-5861(98)00221-1
23 Boullosa-Eiras S, Lødeng R, Bergem H, Stöcker M, Hannevold L, Blekkan E A. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catalysis Today, 2014, 223: 44–53
https://doi.org/10.1016/j.cattod.2013.09.044
24 He L, Qin Y, Lou H, Chen P. High dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Advances, 2015, 5(54): 43141–43147
https://doi.org/10.1039/C5RA00866B
25 Grilc M, Veryasov G, Likozar B, Jesih A, Levec J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Applied Catalysis B: Environmental, 2015, 63: 467–477
https://doi.org/10.1016/j.apcatb.2014.08.032
26 Imran A, Bramer E A, Seshan K, Brem G. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Processing Technology, 2014, 127: 72–79
https://doi.org/10.1016/j.fuproc.2014.06.011
27 Tyrone G I, Sepúlveda C, Garcia R, García Fierro J L, Escalona N, DeSisto W J. Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A, General, 2012, 435-436: 51–60
https://doi.org/10.1016/j.apcata.2012.05.039
28 Arun N, Sharma R V, Dalai A K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable & Sustainable Energy Reviews, 2015, 48: 240–255
https://doi.org/10.1016/j.rser.2015.03.074
29 Zhou L, Lawal A. Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts. Catalysis Science & Technology, 2016, 6(5): 1442–1454
https://doi.org/10.1039/C5CY01307K
30 Zhou L, Lawal A. Evaluation of presulfided NiMo/gamma-Al2O3 for hydrodeoxygenation of microalgae oil to produce green diesel. Energy & Fuels, 2015, 29(1): 262–272
https://doi.org/10.1021/ef502258q
[1] Sainab Omar, Yang Yang, Jiawei Wang. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids[J]. Front. Chem. Sci. Eng., 2021, 15(1): 4-17.
[2] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[3] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[4] Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti. Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue[J]. Front. Chem. Sci. Eng., 2020, 14(2): 288-303.
[5] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[6] Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang. Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions[J]. Front. Chem. Sci. Eng., 2019, 13(4): 702-717.
[7] Vojtěch Turek, Bohuslav Kilkovský, Zdeněk Jegla, Petr Stehlík. Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Front. Chem. Sci. Eng., 2018, 12(4): 660-669.
[8] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[9] Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs[J]. Front. Chem. Sci. Eng., 2018, 12(1): 50-58.
[10] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[11] Shaolong WAN,Yong WANG. A review on ex situ catalytic fast pyrolysis of biomass[J]. Front. Chem. Sci. Eng., 2014, 8(3): 280-294.
[12] W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process[J]. Front Chem Sci Eng, 2014, 8(1): 104-113.
[13] Quanyuan WEI, Yongshui QU, Tianwei TAN. Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project[J]. Front Chem Sci Eng, 2011, 5(3): 355-361.
[14] Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI. Recent advances in the catalytic pyrolysis of biomass[J]. Front Chem Sci Eng, 2011, 5(2): 188-193.
[15] Rui LI, Baosheng JIN, Xiangru JIA, Zhaoping ZHONG, Gang XIAO, Xufeng FU. Research on combustion characteristics of bio-oil from sewage sludge[J]. Front Chem Eng Chin, 2009, 3(2): 161-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed