Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 353-362    https://doi.org/10.1007/s11705-017-1656-9
RESEARCH ARTICLE
Characterization of landfilled stainless steel slags in view of metal recovery
Xuan Wang1,2, Daneel Geysen3, Tom Van Gerven2, Peter T. Jones1, Bart Blanpain1, Muxing Guo1()
1. Department of Metallurgy and Materials Engineering, KU Leuven, 3001 Heverlee, Belgium
2. Department of Chemical Engineering, KU Leuven, 3001 Heverlee, Belgium
3. Department of Research and Development, Group Machiels, 3001 Heverlee, Belgium
 Download: PDF(740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The slag samples taken from landfill, which originated from different metallurgical processes, have been characterized in this study. The slags were categorized as electric arc furnace (EAF) slag, argon oxygen decarburization/metal refining process slag and vacuum oxygen decarburization slag based on chromium content and basicity. EAF slags have higher potential in metal recovery than the other two slags due to its higher iron and chromium contents. The size of the iron-chromium-nickel alloy particles varies from a few µm up to several cm. The recoveries of large metal particles and metal-spinel aggregates have potential to make the metal recovery from landfilled slags economically viable.

Keywords landfilled stainless steel slag      metal recovery      characterization     
Corresponding Author(s): Muxing Guo   
Just Accepted Date: 14 April 2017   Online First Date: 10 July 2017    Issue Date: 23 August 2017
 Cite this article:   
Xuan Wang,Daneel Geysen,Tom Van Gerven, et al. Characterization of landfilled stainless steel slags in view of metal recovery[J]. Front. Chem. Sci. Eng., 2017, 11(3): 353-362.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1656-9
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/353
Fig.1  (a) Sampling operation on slag heap; (b) cross section of slag heap
SlagDescription
“ALZ” bucket
A aggregate“A aggregate” is composed of a yellowish slag and a black slag. Large pieces (up to several cm) of metal can be observed.
A black“A black” is a dense hard solid slag. White dots can be observed in the black slag matrix. Small pores can be found in the slag, but not in vast amounts.
“STAAL2” bucket
S aggregate“S aggregate” appears to be a yellowish porous solid material with loose bonding structure.
S black“S black” is a porous black solid slag. Small metal particles can be observed visually on the surface when it was crushed.
Green“Green” is a dense hard slag, which gives a greenish color.
YellowSlag “Yellow” is a solid that contains large pores. The surface of the slag is in a yellowish color.
HybridSlag “Hybrid” is an aggregate of two types of slags, which appear in black and yellow respectively.
Tab.1  Categories and concise descriptions of slags
LocationCaOSiO2MgOAl2O3Cr2O3Fe2O3MnOBasicity
148.329.45.55.36.51.71.91.6
237.841.14.54.95.82.61.60.9
347.230.95.56.94.41.91.21.5
447.731.27.26.93.30.71.71.5
546.732.96.73.66.41.01.61.5
Tab.2  Overall chemical composition of slag samples from different locations (wt-%)
SlagCaOSiO2MgOAl2O3Cr2O3Fe2O3MnOBasicityPresumed slag type
A aggregate46.528.07.44.38.02.71.71.7EAF
S aggregate44.830.15.76.17.52.61.71.5EAF
S black35.121.04.53.919.48.92.51.7EAF
Green48.826.29.16.95.80.71.11.9EAF
Yellow44.529.05.97.16.82.11.71.5EAF
Hybrid51.326.78.29.12.30.60.51.9AOD/MRP
A black40.637.37.96.82.30.33.21.1VOD
Tab.3  Overall chemical composition of slag samples (wt-%)
MineralChemical formulaA aggregateS aggregateS blackGreenYellowHybridA black
C2S betaCa2SiO421.623.244.565.543.743.2<1.0
C2S gammaCa2SiO49.63.85.03.98.3<1.0<1.0
MagnesiochromiteMgCr2O412.77.216.94.96.71.61.6
QuartzSiO21.31.41.2<1.05.1<1.01.5
GehleniteCa2Al2SiO76.220.72.0<1.01.61.448.9
BredigiteCa7MgSi4O168.64.83.95.74.427.7<1.0
MagnesiteMgCO33.72.52.9<1.02.55.0<1.0
MerwiniteCa3MgSi2O810.33.72.7<1.04.42.1<1.0
CalciteCaCO31.35.11.52.33.3<1.0<1.0
CuspidineCa4F2Si2O712.58.84.43.44.56.119.2
AkermaniteCa2MgSi2O73.23.7<1.02.0<1.0<1.015.3
Iron carbideFe5C22.12.93.44.24.22.04.3
MagnetiteFe3O4<1.0<1.02.01.71.52.11.7
Calcium chromateCaCr2O4<1.02.82.1<1.02.91.74.2
WollastoniteCaSiO34.27.74.81.93.73.4<1.0
Tab.4  Mineralogical composition of various slag samples (wt-%)
Fig.9  Slag “A aggregate”: (a) overall microstructure; (b) detailed microstructure of metal lean part; (c) detailed microstructure of metal rich part. 1: merwinite; 2&5: Cr spinel; 3: C2S; 4: pores; 6: bredigite; 7: Fe-Cr-Ni alloy
Fig.10  Slag “S aggregate”: (a) overall microstructure; (b) detailed microstructure. 1: bredigite; 2: C2S; 3: Fe-Cr-Ni alloy; 4: Cr spinel; 5: periclase
Fig.11  Slag “S black”: (a) overall microstructure; (b) detailed microstructure. 1: Fe-Cr-Ni alloy; 2: C2S; 3: Cr spinel
Fig.12  Slag “Green”: (a) overall microstructure; (b) detailed microstructure. 1: Cr spinel; 2: C2S; 3: periclase; 4: Fe-Cr-Ni alloy; 5: bredigite
Fig.13  Slag “Yellow”: (a) overall microstructure; (b) detailed microstructure. 1: C2S; 2: Cr spinel; 3: merwinite; 4: magnesium aluminate (MgAl2O4)
Fig.14  Slag “Hybrid”: (a) overall microstructure of H-black slag; (b) detailed microstructure of H-black slag; (c) overall microstructure of H-yellow slag; (d) detailed microstructure of H-yellow slag. 1&5: periclase; 2: bredigite; 3: Cr spinel; 4&8: C2S; 6: cuspidine; 7: Fe-Cr-Ni alloy
Fig.15  Slag “A black”: (a) overall microstructure; (b) detailed microstructure. 1: cuspidine; 2: Cr spinel; 3: akermanite; 4: gehlenite
1 Boom R, Riaz S, Mills K C. A boost in research on slags, a doubling in publications from literature since 2003. Ironmaking & Steelmaking, 2010, 37(7): 476–481
https://doi.org/10.1179/030192310X12731438632001
2 Shen H, Forssberg E. An overview of recovery of metals from slags. Waste Management (New York, N.Y.), 2003, 23(10): 933–949
https://doi.org/10.1016/S0956-053X(02)00164-2
3 Adamczyk B, Brenneis R, Adam C, Mudersbach D. Recovery of chromium from AOD-converter slag. Steel Research International, 2010, 81(12): 1078–1083
https://doi.org/10.1002/srin.201000193
4 Durinck D, Jones P T, Blanpain B, Wollants P. Air-cooling of metallurgical slags containing multivalent oxides. Journal of the American Ceramic Society, 2008, 91(10): 3342–3348
https://doi.org/10.1111/j.1551-2916.2008.02597.x
5 BAM. Recycling of residues from metallurgical industry with the arc furnace technology- RECARC. EU LIFE Environment Demonstration Project, 2006
6 Ye G, Burström E, Kuhn M, Piret J. Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scandinavian Journal of Metallurgy, 2003, 32(1): 7–14
https://doi.org/10.1034/j.1600-0692.2003.00526.x
7 Pillay K, Von Blottnitz H, Petersen J. Aging of chromium (III)-bearing slag and its relation to the atmospheric oxidation of solid chromium (III)-oxide in the presence of calcium oxide. Chemosphere, 2003, 52(10): 1771–1779
https://doi.org/10.1016/S0045-6535(03)00453-3
8 Santos R M, Van Bouwel J, Vandevelde E, Mertens G, Elsen J, Van Gerven T. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. International Journal of Greenhouse Gas Control, 2013, 17: 32–45
https://doi.org/10.1016/j.ijggc.2013.04.004
9 Zhang H, Hong X. An overview for the utilization of wastes from stainless steel industries. Resources, Conservation and Recycling, 2011, 55(8): 745–754
https://doi.org/10.1016/j.resconrec.2011.03.005
10 Rowbotham A L, Levy L S, Shuker L K. Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. Journal of Toxicology and Environmental Health. Part B, 2000, 3(3): 145–178
11 Mostbauer P. Criteria selection for landfills: Do we need a limitation on inorganic total content. Waste Management (New York, N.Y.), 2003, 23(6): 547–554
https://doi.org/10.1016/S0956-053X(03)00028-X
12 Durinck D, Engström F, Arnout S, Heulens J, Jones P T, Björkman B, Blanpain B, Wollants P. Hot stage processing of metallurgical slags. Resources, Conservation and Recycling, 2008, 52(10): 1121–1131
https://doi.org/10.1016/j.resconrec.2008.07.001
13 Sripriya R, Murty C V G K. Recovery of metal from slag/mixed metal generated in ferroalloy plants — a case study. International Journal of Mineral Processing, 2005, 75(1-2): 123–134
https://doi.org/10.1016/j.minpro.2004.08.013
14 Jones P T. Degradation mechanisms of basic refractory materials during the secondary refining of stainless steel in VOD ladles. Leuven: KU Leuven, 2001, 69–71
15 Mashanyare H P, Guest R N. The recovery of ferrochrome from slag at Zimasco. Minerals Engineering, 1997, 10(11): 1253–1258
https://doi.org/10.1016/S0892-6875(97)00111-8
16 ParkerJ A L, LovedayG K. Recovery of metal from slag in the ferro-alloy industry. In: Glen H Wed. Hidden Wealth. Johannesburg: Southern African Institute of Mining and Metallurgy, 2006, 7–15
17 SanoN. Reduction of chromium oxide in stainless steel slags.In: Proceedings of 10th International Ferroalloys Congress. Cape Town: South African Institute of Mining and Metallurgy, 2004, 670–677
16 Lee S B, Song H, Hwang H Y, Rhee C H, Klevan O S. Effects of ferrosilicon particle size on reduction rate of chromium oxide in slag. Scandinavian Journal of Metallurgy, 2003, 32(5): 247–255
https://doi.org/10.1034/j.1600-0692.2003.00649.x
17 Park J H, Song H S, Min D J. Reduction behavior of EAF slags containing Cr2O3 using aluminum at 1793 K. ISIJ International, 2004, 44(5): 790–794
https://doi.org/10.2355/isijinternational.44.790
18 Gao J, Li S, Zhang Y, Zhang Y, Chen P, Shen P. Process of re-resourcing of converter slag. Journal of Iron and Steel Research International, 2011, 18(12): 32–39
https://doi.org/10.1016/S1006-706X(12)60006-5
[1] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[2] Jiang-Wei Shen, Xue Cai, Bao-Juan Dou, Feng-Yu Qi, Xiao-Jian Zhang, Zhi-Qiang Liu, Yu-Guo Zheng. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis[J]. Front. Chem. Sci. Eng., 2020, 14(5): 868-879.
[3] Ganesh TILEKAR, Kiran SHINDE, Kishor KALE, Reshma RASKAR, Abaji GAIKWAD. The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate[J]. Front Chem Sci Eng, 2011, 5(4): 477-491.
[4] Shengxiong DONG, Qiaoping CHEN, Hongfang XIE, Jianhua HUANG. Synthesis and characterization of norfloxacin biomonomer[J]. Front Chem Sci Eng, 2011, 5(1): 55-59.
[5] Yanni WU, Shijun LIAO. Review of SO42-/MxOy solid superacid catalysts[J]. Front Chem Eng Chin, 2009, 3(3): 330-343.
[6] XU Xiaohui, LIU Xiaoyun, ZHOU Chengjun, ZHUANG Qixin, HAN Zhewen. Synthesis and properties of polybenzazoles containing flexible methylene in backbone [J]. Front. Chem. Sci. Eng., 2008, 2(4): 412-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed