Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 586-593    https://doi.org/10.1007/s11705-017-1659-6
RESEARCH ARTICLE
Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition
Huan Liu, Zhen Ma()
Shanghai Key Laboratory of Atmospheric Particle Pollution & Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
 Download: PDF(416 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hexagonal CePO4 nanorods were prepared by a precipitation method and hexagonal CePO4 nanowires were prepared by hydrothermal synthesis at 150 °C. Rh(NO3)3 was then used as a precursor for the impregnation of Rh2O3 onto these CePO4 materials. The Rh2O3 supported on the CePO4 nanowires was much more active for the catalytic decomposition of N2O than the Rh2O3 supported on CePO4 nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO2, O2, H2O or O2/H2O) on the N2O decomposition was also investigated. The samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO2 temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

Keywords Rh2O3      CePO4      N2O decomposition     
Corresponding Author(s): Zhen Ma   
Just Accepted Date: 10 May 2017   Online First Date: 14 July 2017    Issue Date: 06 November 2017
 Cite this article:   
Huan Liu,Zhen Ma. Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition[J]. Front. Chem. Sci. Eng., 2017, 11(4): 586-593.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1659-6
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/586
Fig.1  XRD patterns of Rh2O3/CePO4 catalysts
Fig.2  TEM and HRTEM images of Rh2O3/CePO4 catalysts
Fig.3  N2O conversions over Rh2O3/CePO4 catalysts and CePO4 supports
Fig.4  Stabilities of the Rh2O3/CePO4-nanorods and Rh2O3/CePO4-nanowires for N2O decomposition
Fig.5  The influence of co-feed 2% CO2, 5% O2, 2% H2O, or 5% O2+2% H2O on the conversion of N2O over (a) Rh2O3/CePO4-nanorods and (b) Rh/CePO4-nanowires
Fig.6  N2O conversion over Rh2O3/CePO4-nanorods in the presence of 5% O2 or 2% H2O at 400 °C
Fig.7  N2O conversion over Rh2O3/CePO4-nanowires in the presence of 5% O2 or 2% H2O at 350 °C
Fig.8  CO2-TPD profiles of Rh2O3/CePO4 catalysts
Fig.9  O2-TPD profiles of Rh2O3/CePO4 catalysts
Fig.10  H2-TPR profiles of Rh2O3/CePO4 catalysts
1 YanW F, BrownS, PanZ W, Mahurin S M, OverburyS H , DaiS. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate.Angewandte Chemie International Edition, 2006, 45(22): 3614–3618
https://doi.org/10.1002/anie.200503808
2 LiM J, WuZ L, OverburyS H . CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility on surface reactions.Journal of Catalysis, 2011, 278(1): 133–142
https://doi.org/10.1016/j.jcat.2010.11.019
3 LiuH, LinY, MaZ, Lin Y, Ma Z. Au/LaPO4 nanowires: Synthesis, characterization, and catalytic CO oxidation.Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 275–282
https://doi.org/10.1016/j.jtice.2016.01.016
4 QianX S, QinH M, MengT, Lin Y, MaZ . Metal phosphate-supported Pt catalysts for CO oxidation.Materials (Basel), 2014, 7(12): 8105–8130
https://doi.org/10.3390/ma7128105
5 PanB, LuoS J, SuW Y, Wang X X. Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst.Applied Catalysis B: Environmental, 2015, 168-169: 458–464
https://doi.org/10.1016/j.apcatb.2014.12.046
6 TamaiH, IkeyaT, NishiyamaF, Yasuda H, IidaK , NojimaS. NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles.Journal of Materials Science, 2000, 35(19): 4945–4953
https://doi.org/10.1023/A:1004886526496
7 MachidaM, EidomeT, MinamiS, Buwono H P, HinokumaS , NagaoY, Nakahara Y. Tuning the electron density of Rh supported on metal phosphates for three-way catalysis.Journal of Physical Chemistry C, 2015, 119(21): 11653–11661
https://doi.org/10.1021/acs.jpcc.5b01846
8 LinY, MengT, MaZ. Catalytic decomposition of N2O over RhOx supported on metal phosphates.Journal of Industrial and Engineering Chemistry, 2015, 28: 138–146
https://doi.org/10.1016/j.jiec.2015.02.009
9 LiuH, MaZ. Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation.Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 373–380
https://doi.org/10.1016/j.jtice.2016.11.024
10 KapteijnF, Rodriguez-Mirasol J, MoulijnJ A . Heterogeneous catalytic decomposition of nitrous oxide.Applied Catalysis B: Environmental, 1996, 9(1-4): 25–64
https://doi.org/10.1016/0926-3373(96)90072-7
11 KonsolakisM. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects.ACS Catalysis, 2015, 5(11): 6397–6421
https://doi.org/10.1021/acscatal.5b01605
12 LiuZ M, HeF, MaL L, Peng S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts.Catalysis Surveys from Asia, 2016, 20(3): 121–132
https://doi.org/10.1007/s10563-016-9213-y
13 Bueno-LopezA, Such-Basanez I, LeceaC S M D . Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2.Journal of Catalysis, 2006, 244(1): 102–112
https://doi.org/10.1016/j.jcat.2006.08.021
14 Parres-EsclapezS, Illán-Gómez M J, LeceaC S M D , Bueno-LópezA. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt.Applied Catalysis B: Environmental, 2010, 96(3-4): 370–378
https://doi.org/10.1016/j.apcatb.2010.02.034
15 HuangC Y, MaZ, XieP F, Yue Y H, HuaW M , GaoZ. Hydroxyapatite-supported rhodium catalysts for N2O decomposition.Journal of Molecular Catalysis A Chemical, 2015, 400: 90–94
https://doi.org/10.1016/j.molcata.2015.02.011
16 HuangC Y, JiangY X, MaZ, XieP F, LinY, Meng T, MiaoC X , YueY H, HuaW M, GaoZ. Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition.Journal of Molecular Catalysis A Chemical, 2016, 420: 73–81
https://doi.org/10.1016/j.molcata.2016.04.012
17 LucasS, Champion E, BregirouxD , Bernache-AssollantD, Audubert F. Rare earth phosphate powders RePO4·nH2O (Re= La, Ce or Y)—Part I. Synthesis and characterization.Journal of Solid State Chemistry, 2004, 177(4-5): 1302–1311
https://doi.org/10.1016/j.jssc.2003.11.003
18 WengX L, MeiR J, ShiM P, Kong Q Y, LiuY , WuZ B. CePO4 catalyst for elemental mercury removal in simulated coal-fired flue gas.Energy & Fuels, 2015, 29(5): 3359–3365
https://doi.org/10.1021/acs.energyfuels.5b00119
19 ZhangY J, GuanH M. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires.Journal of Crystal Growth, 2003, 256(1-2): 156–161
https://doi.org/10.1016/S0022-0248(03)01301-0
20 CaoM, HuC, WuQ, GuoC, QiY, WangE. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires.Nanotechnology, 2005, 16(2): 282–286
https://doi.org/10.1088/0957-4484/16/2/018
21 Palma-RamírezD, Domínguez-Crespo M A, Torres-HuertaA M , Dorantes-RosalesH, Ramírez-Meneses E, RodríguezE . Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties.Journal of Alloys and Compounds, 2015, 643: S209–S218
https://doi.org/10.1016/j.jallcom.2014.12.053
22 ZhangY J, WangJ H, ZhangT. Novel Ca-doped CePO4 supported ruthenium catalyst with superior catalytic performance for aerobic oxidation of alcohols.Chemical Communications, 2011, 47(18): 5307
https://doi.org/10.1039/c1cc10626k
23 ItohM, Takehara M, SaitoM , MachidaK. NOx reduction activity over phosphate-supported platinum catalysts with hydrogen under oxygen-rich condition.IOP Conference Series. Materials Science and Engineering, 2011, 18(17): 172007
https://doi.org/10.1088/1757-899X/18/17/172007
24 Romero-SarriaF, Domínguez M I, CentenoM A , OdriozolaJ A. CO oxidation at low temperature on Au/CePO4: Mechanistic aspects.Applied Catalysis B: Environmental, 2011, 107(3): 268–273
https://doi.org/10.1016/j.apcatb.2011.07.022
25 FangY P, XuA W, SongR Q, Zhang H X, YouL P , YuJ C, LiuH Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires.Journal of the American Chemical Society, 2003, 125(51): 16025–16034
https://doi.org/10.1021/ja037280d
26 FangJ, EvansC W, WillisG J, Sherwood D, GuoY , LuG, RastonC L, IyerK S. Sequential microfluidic flow synthesis of CePO4 nanorods decorated with emission tunable quantum dots.Lab on a Chip, 2010, 10(19): 2579–2582
https://doi.org/10.1039/c005022a
27 LiL, NiuS F, QuY, ZhangQ, LiH, LiY S, ZhaoW R, Shi J L. One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and low power consumption methane catalytic combustion micro-sensor.Journal of Materials Chemistry, 2012, 22(18): 9263–9267
https://doi.org/10.1039/c2jm15870a
28 MachidaM, MinamiS, HinokumaS, Yoshida H, NagaoY , SatoT, Nakahara Y. Unusual redox behavior of Rh/AlPO4 and its impact on three-way catalysis.Journal of Physical Chemistry C, 2015, 119(1): 373–380
https://doi.org/10.1021/jp509649r
29 YaoW Y, LiuY, WangX Q, Weng X L, WangH Q , WuZ B. The superior performance of sol–gel made Ce–O–P catalyst for selective catalytic reduction of NO with NH3.Journal of Physical Chemistry C, 2016, 120(1): 221–229
https://doi.org/10.1021/acs.jpcc.5b07734
30 QiuL M, LiuF, ZhaoL Z, Ma Y, YaoJ N . Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder.Applied Surface Science, 2006, 252(14): 4931–4935
https://doi.org/10.1016/j.apsusc.2005.07.024
31 BêcheE, Charvin P, PerarnauD , AbanadesS, Flamant G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz).Surface and Interface Analysis, 2008, 40(3-4): 264–267
https://doi.org/10.1002/sia.2686
32 KonsolakisM, Carabineiro S A C, PapistaE , MarnellosG E, Tavares P B, MoreiraJ A , Romaguera-BarcelayY, Figueiredo J L. Effect of preparation method on the solid state properties and the deN2O performance of CuO–CeO2 oxides.Catalysis Science & Technology, 2015, 5(7): 3714–3727
https://doi.org/10.1039/C5CY00343A
33 ObalováL, Jirátová K, KovandaF , PacultováK, Lacný Z, MikulováZ . Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds.Applied Catalysis B: Environmental, 2005, 60(3-4): 289–297
https://doi.org/10.1016/j.apcatb.2005.04.002
34 XueL, HeH, LiuC, Zhang C B, ZhangB . Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition.Environmental Science & Technology, 2009, 43(3): 890–895
https://doi.org/10.1021/es801867y
35 BeyerH, Emmerich J, ChatziapostolouK , KöhlerK. Decomposition of nitrous oxide by rhodium catalysts: Effect of rhodium particle size and metal oxide support.Applied Catalysis A, General, 2011, 391(1-2): 411–416
https://doi.org/10.1016/j.apcata.2010.03.060
36 ImamuraS, TadaniJ I, SaitoY, Okamoto Y, JindaiH KaitoC. Decomposition of N2O on Rh-loaded Pr/Ce composite oxides.Applied Catalysis A, General, 2000, 201(1): 121–127
https://doi.org/10.1016/S0926-860X(00)00431-2
37 HussainM, AkhterP, FinoD, Russo N. Modified KIT-6 and SBA-15-spherical supported metal catalysts for N2O decomposition.Journal of Environmental Chemical Engineering, 2013, 1(3): 164–174
https://doi.org/10.1016/j.jece.2013.04.013
38 LiuH, LinY, MaZ. Rh2O3/mesoporous MOx-Al2O3 (M= Mn, Fe, Co, Ni, Cu, Ba) catalysts: Synthesis, characterization, and catalytic applications.Chinese Journal of Catalysis, 2016, 37(1): 73–82
https://doi.org/10.1016/S1872-2067(15)60951-2
[1] FCE-17006-OF-LH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed