Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 369-378    https://doi.org/10.1007/s11705-017-1662-y
RESEARCH ARTICLE
Alkali-thermal gasification and hydrogen generation potential of biomass
Alexander B. Koven1, Shitang S. Tong2, Ramin R. Farnood1, Charles Q. Jia1()
1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S-3E5, Canada
2. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Generating hydrogen gas from biomass is one approach to lowering dependencies on fossil fuels for energy and chemical feedstock, as well as reducing greenhouse gas emissions. Using both equilibrium simulations and batch experiments with NaOH as a model alkaline, this study established the technical feasibility of converting various biomasses (e.g., glucose, cellulose, xylan and lignin) into H2-rich gas via catalyst-free, alkali-thermal gasification at moderate temperatures (as low as 300 °C). This process could produce more H2 with less carbon-containing gases in the product than other comparable methods. It was shown that alkali-thermal gasification followsCx HyOz+ 2xNaOH+(xz)H2 O= (2x+y/2z )H2+x Na2 CO 3, with carbonate being the solid product which is different from the one suggested in the literature. Moreover, the concept of hydrogen generation potential (H2-GP)—the maximum amount of H2 that a biomass can yield, was introduced. For a given biomass CxHyOz, the H2-GP would be moles of H2. It was demonstrated experimentally that the H2- GP was achievable by adjusting the amounts of H2O and NaOH, temperature and pressure.

Keywords hydrogen generation potential      biomass      lignocellulose      alkali-thermal gasification      sodium hydroxide     
Corresponding Author(s): Charles Q. Jia   
Just Accepted Date: 10 May 2017   Online First Date: 10 July 2017    Issue Date: 23 August 2017
 Cite this article:   
Alexander B. Koven,Shitang S. Tong,Ramin R. Farnood, et al. Alkali-thermal gasification and hydrogen generation potential of biomass[J]. Front. Chem. Sci. Eng., 2017, 11(3): 369-378.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1662-y
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/369
Fig.1  Schematic of reactor (1) furnace; (2) reactor (pipe tee); (3) electrical heater; (4) thermocouple; (5) temperature controller; (6) pressure gauge
Fig.2  Effect of temperature and excess H2O on predicted H2 production from glucose with stoichiometric amount of NaOH
Fig.3  HGR vs. mass of NaOH for 0.10 g glucose, 50 min at 350 °C
Fig.4  HGR vs. amount water added (either pre-mixed with glucose and NaOH or reacted as steam) for 0.10 g glucose, 0.30 g NaOH, 50 min, 350 °C
Fig.5  HGRvs.temperature for 0.10 g glucose, 0.30 g NaOH, 50 min
Carbon content in products %
Total carbon in gasification product (A) 15±2
Total inorganic carbon in ashed gasification product (B) 10±1
Total organic carbon (A?B) 5±2
Tab.1  Carbon analysis of the gasification product (from 0.10 g glucose, 0.30 g NaOH, 350 °C, 50 min) pre- and post-ashing at 500 °C for 4 h
Fig.6  Thermogravimetric analysis of solid product residue from alkali-thermal gasification, conducted in air with a heating rate of 20 °C/min
Fig.7  Product yields of alkali-thermal gasification glucose compared to (a) gasification with and without metal catalysts [26], and (b) alkali-hydrothermal gasification [27]
Fig.8  Gasification of various feedstock (0.10 g biomass, 0.30 g NaOH, 350 °C, and 50 min)
1 Ishida M, Otsuka  K, Takenaka S ,  Yamanaka I . One-step production of CO- and CO2-free hydrogen from biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(3): 281–284
https://doi.org/10.1002/jctb.1188
2 EG&G Technical Services. I. In: Fuel Processing Techniques, Fuel Cell Handbook 7th ed. Morgantown: U.S. Department of Energy, 2004, 257–259
3 Balat H, Kırtay  E. Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy, 2010, 35(14): 7416–7426
https://doi.org/10.1016/j.ijhydene.2010.04.137
4 Kirtay E. Recent advances in production of hydrogen from biomass. Energy Conversion and Management, 2011, 52(4): 1778–1789
https://doi.org/10.1016/j.enconman.2010.11.010
5 Basu P, Mettanant  V. Biomass gasification in supercritical water—A review. International Journal of Chemical Reactor Engineering, 2009, 7(1): 1919
https://doi.org/10.2202/1542-6580.1919
6 Elliott D C. In hydrothermal processing. In: Brown R C, ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. West Sussex: Wiley, 2011, 200–231
7 Schmieder H, Abeln  J, Boukis N ,  Dinjus E ,  Kruse A ,  Kluth M ,  Petrich G ,  Sadri E ,  Schacht M . Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids, 2000, 17(2): 145–153
https://doi.org/10.1016/S0896-8446(99)00051-0
8 Muangrat R, Onwudili  J A, Williams  P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. International Journal of Hydrogen Energy, 2010, 35(14): 7405–7415
https://doi.org/10.1016/j.ijhydene.2010.04.179
9 Azadi P, Afif  E, Azadi F ,  Farnood R . Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chemistry, 2012, 6(6): 1766–1777
https://doi.org/10.1039/c2gc16378k
10 Gökkaya D S ,  Saglam M ,  Yuksel M ,  Ballice L . Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass and Bioenergy, 2016, 1: 26–36
https://doi.org/10.1016/j.biombioe.2016.04.013
11 Kruse A. Supercritical water gasification. Biofuels, Bioproducts & Biorefining, 2008, 2(5): 415–437
https://doi.org/10.1002/bbb.93
12 Ishida M, Takenaka  S, Yamanaka I ,  Otsuka K . Production of COx-free hydrogen from biomass and NaOH mixture: Effect of catalysts. Energy & Fuels, 2006, 20(2): 748–753
https://doi.org/10.1021/ef050282u
13 Nzihou A, Stanmore  B, Sharrock P . A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 2013, 58(1): 305–317
https://doi.org/10.1016/j.energy.2013.05.057
14 Tchapda A H, Pisupati  S V. A review of thermal co-conversion of coal and biomass/waste. Energies, 2014, 7(3): 1098–1148
https://doi.org/10.3390/en7031098
15 Zhang Z, Pang  S, Levi T . Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renewable Energy, 2017, 1: 356–363
https://doi.org/10.1016/j.renene.2016.08.070
16 Liu X, Xiong  B, Huang X ,  Ding H, Zheng  Y, Liu Z ,  Zheng C . Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel, 2017, 88(15): 474–482
17 Guan G, Kaewpanha  M, Hao X ,  Abudula A . Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2016, 58: 450–461
https://doi.org/10.1016/j.rser.2015.12.316
18 Yan Q, Guo  L, Lu Y . Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management, 2006, 47(11-12): 1515–1528
https://doi.org/10.1016/j.enconman.2005.08.004
19 Smith W R, Missen  R W. In Chemical Thermodynamics and Equilibrium Conditions; Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Hoboken: John Wiley & Sons, 1982, 40–60
20 Lee I, Kim  M, Ihm S . Gasification of glucose in supercritical water. Industrial & Engineering Chemistry Research, 2002, 41(5): 1182–1188
https://doi.org/10.1021/ie010066i
21 Phongkanpai V, Benjakul  S, Tanaka M . Effect of pH on antiocidative activity and other characteristics of caramelization products. Journal of Food Biochemistry, 2006, 30(2): 174–186
https://doi.org/10.1111/j.1745-4514.2006.00053.x
22 Onwudili J A, Williams  P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International Journal of Hydrogen Energy, 2009, 34(14): 5645–5656
https://doi.org/10.1016/j.ijhydene.2009.05.082
23 Lewis R. In Sodium Hydroxide; Hawley’s Condensed Chemical Dictionary. 15th ed. Hoboken: John Wiley & Sons, 2007, 1146
24 Kamo T, Takaoka  K, Otomo J ,  Takahashi H . Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel, 2006, 85(7-8): 1052–1059
https://doi.org/10.1016/j.fuel.2005.10.002
25 Araki K, Yamaguchi  Y, Tsutsumi A ,  Fushimi C . Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research, 2003, 42(17): 3929–3936
https://doi.org/10.1021/ie0300575
26 Azadi P, Syed  K M, Farnood  R. Catalytic gasification of biomass model compound in near-critical water. Applied Catalyst A, 2009, 358(1): 65–72
https://doi.org/10.1016/j.apcata.2009.01.041
27 Widyawati M, Church  T L, Florin  N H, Harris  A T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 2011, 36(8): 4800–4813
https://doi.org/10.1016/j.ijhydene.2010.11.103
28 Wen G, Xu  Y, Xu Z ,  Tian Z. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications, 2010, 11(6): 522–526
https://doi.org/10.1016/j.catcom.2009.12.008
29 Zheng C, Lee  D H, Yang  H, Chen H ,  Yan R, Liang  D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 2005, 20: 388–393
[1] FCE-16082-OF-KA_suppl_1 Download
[1] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[2] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[3] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[4] Jian Zhang, Liang Wang, Yanyan Ji, Fang Chen, Feng-Shou Xiao. Mesoporous zeolites for biofuel upgrading and glycerol conversion[J]. Front. Chem. Sci. Eng., 2018, 12(1): 132-144.
[5] Paul Fabrice NGUEMA,Zejiao LUO,Jingjing LIAN. The biosorption of Cr(VI) ions by dried biomass obtained from a chromium-resistant bacterium[J]. Front. Chem. Sci. Eng., 2014, 8(4): 454-464.
[6] Quanyuan WEI, Yongshui QU, Tianwei TAN. Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project[J]. Front Chem Sci Eng, 2011, 5(3): 355-361.
[7] Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI. Recent advances in the catalytic pyrolysis of biomass[J]. Front Chem Sci Eng, 2011, 5(2): 188-193.
[8] Dongxiang ZHANG, Yuanping LIN, Anmei LI, V. V. TARASOV. Emulsification for castor biomass oil[J]. Front Chem Sci Eng, 2011, 5(1): 96-101.
[9] GUAN Yu, PEI Aixia, GUO Liejin. Hydrogen production by catalytic gasification of cellulose in supercritical water[J]. Front. Chem. Sci. Eng., 2008, 2(2): 176-180.
[10] KONG Xiaoying, WU Chuangzhi, YUAN Zhenhong, MA Longlong, CHANG Jie, LÜ Pengmei. Modeling and simulation of biomass air-steam gasification in a fluidized bed[J]. Front. Chem. Sci. Eng., 2008, 2(2): 209-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed