Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 613-623    https://doi.org/10.1007/s11705-017-1664-9
RESEARCH ARTICLE
Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas
Honggui Tang1,2, Shuangshuang Li1,2, Dandan Gong1,2, Yi Guan1,2, Yuan Liu1,2()
1. Department of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering, Tianjin University, Tianjin 300072, China
 Download: PDF(623 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH4 selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

Keywords methanation      layered double hydroxide      bimetal Ni-Fe alloy      sintering      carbon deposition     
Corresponding Author(s): Yuan Liu   
Just Accepted Date: 19 June 2017   Online First Date: 14 September 2017    Issue Date: 06 November 2017
 Cite this article:   
Honggui Tang,Shuangshuang Li,Dandan Gong, et al. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Front. Chem. Sci. Eng., 2017, 11(4): 613-623.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1664-9
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/613
Fig.1  XRD patterns of NixFeLDHs with x of (a) 0, (b) 1, (c) 2 and (d) 4
Catalystd(003)/nmd(006) /nmd(009) /nmd(110) /nma= 2d(110)/nmc= d(003)+ 2d(006)+ 3d(009)/nm
Ni0FeLDHs0.7760.3850.2590.1530.3062.323
Ni1FeLDHs0.7700.3860.2600.1530.3062.322
Ni2FeLDHs0.7660.3860.2600.1530.3062.318
Ni4FeLDHs0.7600.3830.2600.1530.3062.306
Tab.1  Cell parameters for the NixFeLHDs (x = 0, 1, 2, 4) precursors
Fig.2  Textural properties of the NixFe-CLDHs (a) N2 adsorption-desorption isotherm, and (b) the pore size distribution
Fig.3  The XRD patterns of the NixFe-CLDHs with x of (a) 0, (b) 1, (c) 2 and (d) 4
Fig.4  H2-TPR profiles of NixFe-CLDHs with x of (a) 0, (b) 1, (c) 2 and (d) 4
SampleBET special surface area /(m2?g?1)BJH pore volume /(cm3?g?1)Pore diameter /nmNi and Fe mass fraction
/% a)
Reduction degree /% b)
NiFe
Ni0Fe-CLDHs260.10.849.625.8069.0
Ni1Fe-CLDHs266.60.819.626.11.272.8
Ni2Fe-CLDHs256.20.7312.425.42.077.0
Ni4Fe-CLDHs237.70.7112.225.74.285.0
Tab.2  Physicochemical property of the NixFe-CLDHs (x= 0, 1, 2, 4) catalysts
Fig.5  The XRD patterns of the NixFe-red catalysts with x of (a) 0, (b) 1, (c) 2 and (d) 4
SampleCrystallite size after calcination /nm a)Crystallite size after reduction by XRD /nm b)Crystallite size after reduction by TEM /nm c)Crystallite size after reaction by XRD /nm dCrystallite size after reaction by TEM /nm e
Ni0Fe-red4.2011.112.314.915.1
Ni1Fe-red4.4012.613.4
Ni2Fe-red4.8013.314.313.914.4
Ni4Fe-red5.4014.514.7
Tab.3  Physicochemical properties of NixFe-red catalysts after reduction and reaction
Fig.6  TEM images of the reduced catalysts with x of (a) 0, (b) 1, (c) 2 and (d) 4; STEM images and the corresponding EDS line scanning profiles for Ni and Fe elements of Ni2Fe-red catalyst of (e) and (f); (g), (h) and (i) EDX mapping of Ni and Fe
Fig.7  Ni 2p XPS spectra of the catalysts (a) Ni0Fe-red, (b) Ni2Fe-red, (c) Ni0Fe-used, and (d) Ni2Fe-used
SampleNi2p3/2 /eVFe2p3/2 /eVSurface composition /%
Ni0Fe0Ni/Fe
Ni0Fe-red852.6
Ni2Fe-red852.4706.610.2
Ni0Fe-useda)852.5
Ni2Fe-used852.4706.710.6
Tab.4  XPS results for the reduced and used catalysts
Fig.8  Catalytic performance for CO methanation reaction over NixFe-red catalysts (x = 0, 1, 2, 4) at 30000 mL?g−1?h−1, 0.1 MPa and H2/CO/N2 = 3:1:1
Fig.9  The stability of (a) Ni0Fe-red and (b) Ni2Fe-red catalysts for CO methanation at 600 °C, 0.1 MPa, and 30000 mL?g1?h1
Fig.10  XRD patterns of (a) Ni0Fe-red and (b) Ni2Fe-red after stability test under the reaction conditions as listed in Fig. 9
Fig.11  TEM images of the catalysts after stability test (a) Ni0Fe-used and (b) Ni2Fe-used
Fig.12  TG profiles of the reduced and used catalysts after stability test in air
1 Bian L, Wang W, Xia R, Li Z. Ni-based catalyst derived from Ni/Al hydrotalcitelike compounds by the urea hydrolysis method for CO methanation. RSC Advances, 2016, 6: 677–686
2 Ma S, Tan Y, Han Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 2011, 20(4): 435–440
https://doi.org/10.1016/S1003-9953(10)60192-2
3 Zhang J, Xin Z, Meng X, Lv Y, Tao M. Effect of MoO3  on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel, 2014, 116: 25–33
https://doi.org/10.1016/j.fuel.2013.07.102
4 Kopyscinski J, Schiidhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel, 2010, 89(8): 1763–1783
https://doi.org/10.1016/j.fuel.2010.01.027
5 Zhang G Q, Sun T J, Peng J X, Wang S, Wang S D. A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas. Applied Catalysis A, General, 2013, 462: 75–81
https://doi.org/10.1016/j.apcata.2013.04.037
6 Mohaideen K K, Kim W, Koo K Y, Yoon W L. Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catalysis Communications, 2015, 60: 8–13
https://doi.org/10.1016/j.catcom.2014.10.034
7 Li J, Zhou L, Li P C, Zhu Q S, Gao J J, Gu F N, Su F B. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas. Chemical Engineering Journal, 2013, 219: 183–189
https://doi.org/10.1016/j.cej.2013.01.005
8 Yan X L, Liu Y, Zhao B R, Wang Z, Wang Y, Liu C J. Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies. International Journal of Hydrogen Energy, 2013, 38(5): 2283–2291
https://doi.org/10.1016/j.ijhydene.2012.12.024
9 Zhang H, Dong Y Y, Fang W P, Lian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 2013, 34(2): 330–335
https://doi.org/10.1016/S1872-2067(11)60485-3
10 Zhao A M, Ying W Y, Zhang H T, Ma H F, Fang D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications, 2012, 17: 34–38
https://doi.org/10.1016/j.catcom.2011.10.010
11 Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D J, Lim H, Byun C, Song I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: Effect of nickel content. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 154–157
https://doi.org/10.1016/j.jiec.2010.12.015
12 Daniela C D, Silva D, Letichevsky S, Borges L E P, Appel L G. The Ni/ZrO2 catalyst and the methanation of CO and CO2. International Journal of Hydrogen Energy, 2012, 37(11): 8923–8928
https://doi.org/10.1016/j.ijhydene.2012.03.020
13 Hu D C, Gao J J, Ping Y, Jia L H, Gunawan P, Zhong Z Y, Xu G W, Gu F N, Su F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875–4886
https://doi.org/10.1021/ie300049f
14 Rostrup-Nielsen J R, Pedersen K. Sehested. High temperature methanation: Sintering and structure sensitiviy. Applied Catalysis A. Gerneral, 2007, 330: 134–138
https://doi.org/10.1016/j.apcata.2007.07.015
15 Mirodatos C, Praliaud H, Primetm M. Deactivation of nickel-based catalysts during CO methanation and disproportionation. Journal of Catalysis, 1987, 107: 275–287
16 Liu J, Shen W L, Cui D M, Yu J, Su Fa B, Xu G W. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors. Catalysis Communications, 2013, 38: 35–39
https://doi.org/10.1016/j.catcom.2013.04.014
17 Liu Q, Gao J J, Gu F N, Lu X P, Liu Y J, Li H F, Zhong Z Y, Liu B, Xu G W, Su F B. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation. Journal of Catalysis, 2015, 326: 127–138
https://doi.org/10.1016/j.jcat.2015.04.003
18 Li Z H, Bian L, Zhu Q J, Wang W H. Ni-Based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds and its activity in the methanation of carbon monoxide. Kinetics and Catalysis, 2014, 55(2): 226–233
https://doi.org/10.1134/S0023158414020049
19 Meng F H, Zhong P Z, Li Z, Cui X X, Zheng H Y. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation. Journal of Chemistry, 2014, 5: 1–7
20 Kang S H, Ryu J H, Kim J H, Seo S J, Yoo Y D, Prasad P S S, Lim H J, Byun C D. CO-methanation of CO and CO2 on the Nix-Fe1−x/Al2O3 catalysts: Effect of Fe contents. Korean Journal of Chemical Engineering, 2011, 28(12): 2282–2286
https://doi.org/10.1007/s11814-011-0125-2
21 Liu J G, Cao A, Si J, Zhang L H, Hao Q L, Liu Y. Nanoparticles of Ni-Co alloy derived from layered double hydroxides and their catalytic performance for CO methanation. Nano, 2016, 1: 1–4
22 Yu Y, Jin G Q, Wang Y Y, Guo X Y. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts. Catalysis Communications, 2013, 31: 5–10
https://doi.org/10.1016/j.catcom.2012.11.005
23 Tian D, Liu Z, Li D, Shi H, Pan W, Cheng Y. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure. Fuel, 2013, 104: 224–229
https://doi.org/10.1016/j.fuel.2012.08.033
24 Kustov A L, Frey A M, Larsen K E, Johannessen T, Nrskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A, General, 2007, 320: 98–104
https://doi.org/10.1016/j.apcata.2006.12.017
25 Rhodes C, Hutchings G J, Ward A M. Water-gas shift reaction: Finding the mechanistic boundary. Catalysis Today, 1995, 23(1): 43–58
https://doi.org/10.1016/0920-5861(94)00135-O
26 Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 1991, 11(2): 173–301
https://doi.org/10.1016/0920-5861(91)80068-K
27 Lebedeva O, Tichit D, Coq B. Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on their activation under oxidising and reducing atmospheres. Applied Catalysis A, General, 1999, 183(1): 61–71
https://doi.org/10.1016/S0926-860X(99)00039-3
28 Feng J T, He Y F, Liu Y N, Du Y Y, Li D Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chemical Society Reviews, 2015, 44(15): 5291–5319
https://doi.org/10.1039/C5CS00268K
29 Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chemical Society Reviews, 2014, 43(20): 7040–7066
https://doi.org/10.1039/C4CS00160E
30 Abelló S, Bolshak E, Montané D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming. Applied Catalysis A, General, 2013, 450: 261–274
https://doi.org/10.1016/j.apcata.2012.10.035
31 Li D L, Koike M, Wang L, Nakagawa Y, Xu Y, Tomishige K. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar. ChemSusChem, 2014, 7(2): 510–522
https://doi.org/10.1002/cssc.201300855
32 Gao W, Li C M, Chen H, Wu M, He S, Wei M, Evans D G, Duan X. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O. Royal Society of Chemistry, 2014, 16: 1560–1568
33 Wang L, Li D L, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A, General, 2011, 392(1-2): 248–255
https://doi.org/10.1016/j.apcata.2010.11.013
34 Coleman L J I, Epling W, Hudgins R R, Croiset E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A, General, 2009, 363(1-2): 52–63
https://doi.org/10.1016/j.apcata.2009.04.032
35 Zhao L, Han T, Wang H, Zhang L H, Liu Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Applied Catalysis B: Environmental, 2016, 187: 19–29
https://doi.org/10.1016/j.apcatb.2016.01.007
36 Tan P J, Gao Z H, Shen C F, Du Y L, Li X D, Huang W. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4. Chinese Journal of Catalysis, 2014, 35(12): 1955–1971
https://doi.org/10.1016/S1872-2067(14)60171-6
37 Zhu Y J, Zhang S H, Chen B B, Zhang Z S, Shi C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane. Catalysis Today, 2016, 264: 163–170
https://doi.org/10.1016/j.cattod.2015.07.037
38 Wang W J, Chen Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Applied Catalysis, 1991, 77(2): 223–233
https://doi.org/10.1016/0166-9834(91)80067-7
39 Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 1995, 23(1): 3–15
https://doi.org/10.1016/0920-5861(94)00080-L
40 Nichio N, Casella M, Ferretti O, González M, Nicot C, Moraweck B, Frety R. Partial oxidation of methane to synthesis gas: Behaviour of different Ni supported catalysts. Catalysis Letters, 1996, 42: 65–72
41 Claridge J B, Green M L H, Tsang S C, York A P E, Ashcroft A T, Battle P D. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catalysis Letters, 1993, 22(4): 299–305
42 Audier M, Oberlin A, Oberlin M, Coulon M, Bonnetain L. Morphology and crystalline order in catalytic carbons. Carbon, 1981, 19(3): 217–224
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan. Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure[J]. Front. Chem. Sci. Eng., 2021, 15(1): 60-71.
[3] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
[4] Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang. Current understanding and applications of the cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 654-664.
[5] Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou. Performance assessment of a power-to-gas process based on reversible solid oxide cell[J]. Front. Chem. Sci. Eng., 2018, 12(4): 697-707.
[6] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[7] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[8] Kechao Zhao,Zhenhua Li,Li Bian. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2016, 10(2): 273-280.
[9] Zhenhua LI, Jia HE, Haiyang WANG, Baowei WANG, Xinbin MA. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3[J]. Front. Chem. Sci. Eng., 2015, 9(1): 33-39.
[10] Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst[J]. Front Chem Sci Eng, 2013, 7(1): 88-94.
[11] Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE. Strengthening mechanisms in carbon nanotube reinforced bioglass composites[J]. Front Chem Sci Eng, 2012, 6(2): 126-131.
[12] Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
[13] Yongfa ZHANG, Meng ZHANG, Guojie ZHANG, Huirong ZHANG. Effect of carbon deposition over carbonaceous catalysts on CH4 decomposition and CH4-CO2 reforming[J]. Front Chem Eng Chin, 2010, 4(4): 481-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed