Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 103-112    https://doi.org/10.1007/s11705-017-1671-x
REVIEW ARTICLE
Shape selective catalysis in methylation of toluene: Development, challenges and perspectives
Jian Zhou1, Zhicheng Liu1, Yangdong Wang1, Dejin Kong1, Zaiku Xie1,2()
1. Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
2. SINOPEC, Beijing 100027, China
 Download: PDF(311 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Toluene methylation with methanol offers an alternative method to produce p-xylene by gathering methyl group directly from C1 chemical sources. It supplies a “molecular engineering” process to realize directional conversion of toluene/methanol molecules by selective catalysis in complicated methylation system. In this review, we introduce the synthesis method of p-xylene, the development history of methylation catalysts and reaction mechanism, and the effect of reaction condition in para-selective technical process. If constructing p-xylene as the single target product, the major challenge to develop para-selective toluene methylation is to improve the p-xylene selectivity without, or as little as possible, losing the fraction of methanol for methylation. To reach higher yield of p-xylene and more methanol usage in methylation, zeolite catalyst design should consider improving mass transfer and afterwards covering external acid sites by surface modification to get short “micro-tunnels” with shape selectivity. A solid understanding of mass transfer will benefit realizing the aim of converting more methanol feedstock into para-methyl group.

Keywords shape selective catalysis      methylation of toluene     
Corresponding Author(s): Zaiku Xie   
Just Accepted Date: 19 June 2017   Online First Date: 03 November 2017    Issue Date: 26 February 2018
 Cite this article:   
Jian Zhou,Zhicheng Liu,Yangdong Wang, et al. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Front. Chem. Sci. Eng., 2018, 12(1): 103-112.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1671-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/103
Fig.1  Diffusivity of n-hexane, i-hexane and alkyl benzenes in ZSM-5 [12]
Fig.2  Illustration of the (A) concerted and (B) stepwise pathways proposed for zeolite-catalyzed methylation of toluene by methanol to form the xylene [20]
Fig.3  Mechanisms of toluene methylation with methanol catalyzed by acidic zeolite [15]
Fig.4  Conversion for toluene methylation and the amount of medium acid of zeolites calculated by ammonia desorbed in 300?450 °C: (1) 35.3% MCM-22, (2) 28.8% ZSM-5 with Si/Al ratio= 48, (3) 27.0% SAPO-11, (4) 25.8% ZSM-5 with Si/Al ratio= 136, and (5) 24.4% SAPO-5 [26]
Fig.5  Schematic preparation route of ZSM-5@Silicalite-1 core/shell zeolite structure [46]
Fig.6  Ternary xylene isomer plot illustrating the beneficial effect on p-xylene selectivity by operating at ultralow contact time. MgO-ZSM-5 catalyst at 440 °C and molar feed of 44.4% C6H5CH3, 5.6% CH3OH, 50% H2O, and variable H2 to alter contact time. t1: 2.54 s; t2: 1.1 s; t3: 0.86 s; t4: 0.63 s; t5: 0.17 s. Toluene conversion was typically between 10% and 12% [33]
Fig.7  Complex reaction frameworks in methylation of toluene. R1: para-methylation of toluene; R2: methanol to hydrocarbons; R21: alkylation of toluene with olefins; R3: toluene disproportionation process; R11 and R12: isomerization of p-xylene; R13: further methylation of xylene
Fig.8  Zeolites prepared from H-ZSM-5 by desilication (DS), subsequent dealumination (DS-DA), and deposition of the SiO2 overlayer with tetraethyl orthosilicate from H-ZSM5 (SM), DS (DS-SM) and DS-DA samples (DS-DA-SM) [31]
1 Vermeiren W, Gilson  J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
2 Luo H, Zhao  R. A review of China’s PX market in 2015 and a prospect for future. Petroleum & Petrochemical Today, 2016, 24(5): 17–19
3 Shi J, Wang  Y D, Yang  W M, Tang  Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44: 8877–8903
4 Chen Q, Kong  D, Yang W. Developmental trends in p-xylene production increasing technology. Petrochemical Technology, 2004, 33(10): 909–915
5 Tsai T, Liu  S, Wang I. Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 1999, 181(2): 355–398
6 Chen N Y, Kaeding  W W, Dwyer  F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. Journal of the American Chemical Society, 1979, 101(22): 6783–6784
7 Young L B, Butter  S A, Kaeding  W W. Shape Selective Reactions with Zeolite Catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432
8 Weisz P B, Frilette  V J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts. Journal of Physical Chemistry, 1960, 64(3): 382–382
9 Kaeding W W, Chu  C C, Young  L B, Butter  S A. Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and  p-xylene. Journal of Catalysis, 1981, 69: 392–398
10 Kaeding W W, Young  L B, Chu  C C. Shape-selective reactions with zeolite catalysts: IV. Alkylation of toluene with ethylene to produce  p-ethyltoluene. Journal of Catalysis, 1984, 89(2): 267–273
11 Kaeding W W. Shape-selective reactions with zeolite catalysts: V. Alkylation or disproportionation of ethylbenzene to produce p-diethylbenzene. Journal of Catalysis, 1985, 95(2): 512–519
12 Cejka J, Corma  A, Zones S. Zeolites and Catalysis Synthesis, Reactions and Applications.  Weinheim: Wiley-VCH, 2010, 605
13 Guisnet M, Gilson  J P. Zeolites for Cleaner Technologies. London: Imperial College Press, 2002, 19
14 Svelle S, Visur  M, Olsbye U,  Saepurahman S,  Bjørgen M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A review. Topics in Catalysis, 2011, 54(13-15): 897–906
15 Vos A M, Rozanska  X, Schoonheydt R A,  van Santen R A,  Hutschka F,  Hafner J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. Journal of the American Chemical Society, 2001, 123(12): 2799–2809
16 Svelle S, Kolboe  S, Olsbye U,  Swang O. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites. Journal of Physical Chemistry B, 2003, 107(22): 5251–5260
17 Blaszkowski S R,  van Santen R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. Journal of Physical Chemistry B, 1997, 101(13): 2292–2305
18 Boronat M, Martínez  C, Corma A. Mechanistic differences between methanol and dimethylether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 2011, 13: 2603–2612
19 Wen Z, Yang  D, Yang F,  Wei Z, Zhu  X. Methylation of toluene with methanol over HZSM-5: A periodic density functional theory investigation. Chinese Journal of Catalysis, 2016, 37(11): 1882–1890
20 Saepurahman V M,  Olsbye U,  Bjørgen M,  Svelle S. In situFT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Topics in Catalysis, 2011, 54(16-18): 1293–1301
21 Brogaard R Y, Henry  R, Schuurman Y,  Medford A J,  Moses P G,  Beato P,  Svelle S,  Nørskov J K,  Olsbye U. Methanol-to-hydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314: 159–169
22 Li L L, Janik  M J, Nie  X W, Song  C S, Guo  X W. Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5. Acta Physico-Chimica Sinica, 2013, 29(7): 1467–1478
23 Jones J A, Iglesia  E. Kinetic, spectroscopic, and theoretical assessment of associative and dissociative methanol dehydration routes in zeolites. Angewandte Chemie International Edition, 2014, 53: 12177–12181
24 Wang C M, Wang  Y D, Du  Y J, Yang  G, Xie Z K. Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: Insights from energetic span model. Catalysis Science & Technology, 2015, 5: 4354–4364
25 Yashima T, Ahmad  H, Yamazaki K,  Katsuta M,  Hara N. Alkylation on synthetic zeolites: I. Alkylation of toluene with methanol. Journal of Catalysis, 1970, 16(3): 273–280
26 Zhu Z, Chen  Q, Xie Z,  Yang W, Li  C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Microporous and Mesoporous Materials, 2006, 88(1-3): 16–21
27 Halgeri A B, Das  J. Recent advances in selectivation of zeolites for para-disubstituted aromatics. Catalysis Today, 2002, 73(1-2): 65–73
28 Zheng S, Jentys  A, Lercher J A. Xylene isomerization with surface-modified HZSM-5 zeolite catalysts: An in situ IR study. Journal of Catalysis, 2006, 241(2): 304–311
29 Llopis F J, Sastre  G, Corma A. Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33,  b, and ZSM-5: Molecular dynamics and catalytic studies. Journal of Catalysis, 2004, 227(1): 227–241
30 John H A, Kolvenbach  R, Neudeck C,  Al-Khattaf S S,  Jentys A,  Lercher J A. Tailoring mesoscopically structured H-ZSM5 zeolites for toluene Methylation. Journal of Catalysis, 2014, 311: 271–280
31 John H A, Kolvenbach  R, Al-Khattaf S S,  Jentys A,  Lercher J A. Enhancing shape selectivity without loss of activity—novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene. Chemical Communications, 2013, 49(10): 10584–10586
32 Li J, Xiang  H, Liu M,  Wang Q, Zhu  Z, Hu Z. The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649
33 Breen J, Burch  R, Kulkarni M,  Collier P,  Golunski S. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time. Journal of the American Chemical Society, 2005, 127(14): 5020–5021
34 Tan W, Liu  M, Zhao Y,  Hou K K,  Wu H Y,  Zhang A F,  Liu H O,  Wang Y R,  Song C S,  Guo X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous and Mesoporous Materials, 2014, 196: 18–30
35 Bi Y, Wang  Y L, Wei  Y X, He  Y L, Yu  Z X, Liu  Z M, Xu  L. Improved selectivity toward light olefins in the reaction of toluene with methanol over the modified HZSM-5 catalyst. ChemCatChem, 2014, 6: 713–718
36 Zhao J C, Li  G Y, Ding  Y Q. Effect of antimony oxide on the acidic properties of HZSM-5. Chinese Journal of Catalysis, 1988, 9: 152–157
37 Zheng S, Jentys  A, Lercher J A. On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. Journal of Catalysis, 2003, 219: 310–319
38 Zou W, Yang  D Q, Zhu  Z R, Kong  D J, Chen  Q L, Gao  Z. Methylation of toluene with methanol over metal-oxide modified HZSM-5 catalysts. Chinese Journal of Catalysis, 2005, 26: 470–474
39 Suzuki K, Kiyozumi  Y, Matsuzaki K. Effect of modification of ZSM-5 type zeolite with calcium phosphate on its physico-chemical and catalytic properties. Applied Catalysis, 1991, 39: 315–324
40 Dehertog W J H,  Froment G F. Production of light alkenes from methanol on ZSM-5 catalysts. Applied Catalysis, 1991, 71: 153–165
41 Zhao G, Teng  J W, Xie  Z K, Jin  W Q, Yang  W M, Chen  Q L. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis, 2007, 248: 29–37
42 Zhao Y, Liu  J X, Xiong  G, Guo H C. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline. Chinese Journal of Catalysis, 2017, 38: 138–145
43 Lercher J A, Rumplmayr  G. Controlled decrease of acid strength by orthophosphofic acid on ZSM-5. Applied Catalysis, 1986, 25(1-2): 215–222
44 Ghosh A K, Harvey  P. Toluene Methylation Process. US Patent, 7060864, 2016
45 Hibino T, Niwa  M, Murakami Y. Shape-selectivity over hzsm-5 modified by chemical vapor deposition of silicon alkoxide. Journal of Catalysis, 1991, 128: 551–558
46 Tong W Y, Kong  D J, Liu  Z C, Guo  Y L, Fang  D Y. Synthesis and characterization of ZSM-5/silicalite-1 core-shell zeolite with a fluoride-containing hydrothermal system. Chinese Journal of Catalysis, 2008, 29: 1247–1252
47 Kim J H, Ishida  A, Okajima M,  Niwa M. Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity. Journal of Catalysis, 1996, 161: 387–392
48 Zou W, Yang  D Q, Kong  D J, Xie  Z K. Selective methylation of toluene with methanol over HZSM-5 zeolite modified by chemical liquid deposition. Chemical Reaction Engineering and Technology, 2006, 22: 305–309
49 Sayed M B, Vedrine  J C. The effect of modification with boron on the catalytic activity and selectivity of HZSM-5: I. Impregnation with boric acid. Journal of Catalysis, 1986, 101: 43–55
50 Namba S, Nakanishi  S, Yashima T. Behavior of quinoline derivatives as poisons in isomerization of p-xylene on HZSM-5 zeolite. Journal of Catalysis, 1984, 88: 505–508
51 Tan Y, Zhu  R, Zhang X,  Tang Y, Zeng  Z. Kinetic model of toluene alkylation with methanol to produce para-xylene. Chemical Reaction Engineering and Technology, 2016, 32(2): 1–9
52 Chen Q L, Yang  W M, Teng  J W. Recent advances in coal to chemicals technology developed by SINOPEC. Chinese Journal of Catalysis, 2013, 34: 217–224
53 Cao J S, Zhang  J M, Xu  L, Liu Z M. Superiorities for developing PX production process through alkylation of toluene alcohol. Technology & Economics in Petrochemicals, 2010, 26: 8–10
54 Joseph C, Gentry  S K, Lee  H M. Innovations in para-xylene technology. European Chemical News, 2000, 10–16
55 Brown S H, Mathias  M F, Ware  R A, Olson  D H. Selective para-xylene production by toluene methylation. US Patent, 6504072, 2003
56 Chang C D, Rodewald  P G Jr. Zeolite Catalysts Having Stabilized Hydrogenation—Dehydrogenation Function. US Patent, 6541408, 2003
57 Hill I, Malek  A, Bhan A. Kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI. ACS Catalysis, 2013, 3: 1992–2001
58 John H A, Kolvenbach  R, Al-Khattaf S S,  Jentys A,  Lercher J A. Methanol usage in toluene methylation with medium and large pore zeolites. ACS Catalysis, 2013, 3: 817–825
59 Zhou J, Liu  Z C, Li  L, Wang Y D,  Gao H X,  Yang W M,  Xie Z K,  Tang Y. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o—xylene isomerization. Chinese Journal of Catalysis, 2013, 34: 1429–1433
60 John H A, Kolvenbach  R, Gutierrez O Y,  Al-Khattaf S S,  Jentys A,  Lercher J A. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous and Mesoporous Materials, 2015, 210: 52–59
61 Zhou J, Wang Y D, Zou W,  Wang C M, Li L Y, Liu Z C,  Zheng A M, Kong D J, Yang W M,  Xie Z K. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310–9321
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed