Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 554-563    https://doi.org/10.1007/s11705-017-1673-8
RESEARCH ARTICLE
Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films
Bozhen Wu1, Biyao Geng2,3, Yufei Chen2,3, Hongzhi Liu2,3(), Guangyao Li3(), Qiang Wu2,3()
1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou 311300, China
3. School of Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
 Download: PDF(385 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bleached bamboo kraft pulp was pretreated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation using a TEMPO/NaBr/NaClO system at pH= 10 in water to facilitate mechanical disintegration into TEMPO-oxidized cellulose nanofibrils (TO-CNs). A series of TO-CNs with different carboxylate contents were obtained by varying amounts of added NaClO. An increase in carboxylate contents results in aqueous TO-CN dispersions with higher yield, zeta potential values, and optical transparency. When carboxylate groups are introduced, the DPv value of the TO-CNs remarkably decreases and then levels off. And the presence of hemicellulose in the pulp is favorable to TEMPO oxidization. After the oxidization, the native cellulose I crystalline structure and crystal size of bamboo pulp are almost maintained. TEM micrographs revealed that the degree of nanofibrillation is directly proportional to the carboxylate contents. With increasing carboxylate contents, the free-standing TO-CN films becomes more transparent and mechanically stronger. The oxygen permeability of PLA films drastically decreases from 355 for neat PLA to 8.4 mL·m−2·d1 after coating a thin layer of TO-CN with a carboxylate content of 1.8 mmol·g−1. Therefore, inexpensive and abundant bamboo pulp would be a promising starting material to isolate cellulose nanfibrils for oxygen-barrier applications.

Keywords bamboo      TEMPO      cellulose nanofibrils      oxygen barrier     
Corresponding Author(s): Hongzhi Liu,Guangyao Li,Qiang Wu   
Just Accepted Date: 04 July 2017   Issue Date: 06 November 2017
 Cite this article:   
Bozhen Wu,Biyao Geng,Yufei Chen, et al. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films[J]. Front. Chem. Sci. Eng., 2017, 11(4): 554-563.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1673-8
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/554
Fig.1  Relationships between the amounts of NaClO added in the TEMPO/NaBr/NaClO oxidation of bamboo bleached kraft pulp and either carboxylate (-COO?Na+) content or DPv of TO-CN aqueous dispersions
Fig.2  Relationships between the carboxylate (-COO?Na+) contents and either yields of TO-CNs or zeta potential values of TO-CN aqueous dispersions
Fig.3  Light transmittance spectra of various TO-CN dispersions prepared through mechanical homogenization of bamboo kraft pulp
Fig.4  FT-IR spectra of bamboo bleached kraft pulp and its derived TO-CNs
Fig.5  XRD spectra of pulp and various TO-CN filmsprepared from TEMPO-oxidized bamboo bleached kraft pulp
Carboxylate content /(mmol?g 1) Crystal size /nm a) CrI / %
C1 C2 CA
Bamboo Pulp 4.69 4.70 4.70 70.1
0.5 (0.02) 4.25 4.26 4.26 71.7
1.0 (0.07) 3.89 3.90 3.90 73.5
1.8 (0.10) 4.00 4.01 4.01 76.1
Tab.1  Crystalline data of various TO-CN films prepared from bamboo bleached kraft pulp
Fig.6  TEM images of various TO-CNs prepared from bamboo kraft pulp: (a) TO-CN 0.5, (b) TO-CN 1.0, and (c) TO-CN 1.8
Fig.7  Width distributions of various TO-CNs: (a) TO-CN 0.5, (b) TO-CN 1.0, and (c) TO-CN 1.8
Fig.8  Light transmittance spectra of various TO-CN films (~20?µm in thickness) derived from bamboo kraft pulp
Fig.9  Typical tensile stress-strain curves of various TO-CN films
Samples Tensile strength /MPa Young’s modulus /GPa Strain to failure /%
TO-CN 0.5 48.9 (8.8) 2.5 (1.1) 2.0 (0.9)
TO-CN 1.0 150.4 (24.5) 12.7 (1.8) 1.5 (0.3)
TO-CN 1.8 197.0 (32.1) 10.3 (1.5) 4.5 (1.3)
Tab.2  Mechanical property data of different TO-CN films from the bamboo pulpa)
Fig.10  Oxygen permeability of neat 50? mm thick PLA film and the ones coated with 1? mm thick TO-CN layers
1 Siró I, Plackett  D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose (London, England), 2010, 17(3): 459–494
https://doi.org/10.1007/s10570-010-9405-y
2 Kalia S, Boufi  S, Celli A ,  Kango S . Nanofibrillated cellulose: Surface modification and potential applications. Colloid & Polymer Science, 2014, 292(1): 5–31
https://doi.org/10.1007/s00396-013-3112-9
3 Dieter K, Friederike  K, Sebastian M ,  Tom L M ,  Mikael A ,  Derek G . Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466
https://doi.org/10.1002/anie.201001273
4 Dufresne A. Nanocellulose: A new ageless bionanomaterial. Materials Today, 2013, 16(6): 220–227
https://doi.org/10.1016/j.mattod.2013.06.004
5 Isogai A, Saito  T, Fukuzumi H . TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1): 71–85
https://doi.org/10.1039/C0NR00583E
6 Khalil H P S A ,  Davoudpour Y ,  Islam M N ,  Mustapha A ,  Sudesh K ,  Dungani R ,  Jawaid M . Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014, 99: 649–665
https://doi.org/10.1016/j.carbpol.2013.08.069
7 Besbes I, Alila  S, Boufi S . Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983
https://doi.org/10.1016/j.carbpol.2010.12.052
8 Tsuguyuki S, Yoshiharu  N, Jean-Luc P ,  Michel V ,  Akira I . Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 2006, 7(6): 1687–1691
https://doi.org/10.1021/bm060154s
9 Saito T, Kimura  S, Nishiyama Y ,  Isogai A . Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8(8): 2485–2491
https://doi.org/10.1021/bm0703970
10 Puangsin B, Fujisawa  S, Kuramae R ,  Saito T ,  Isogai A . TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymers and the Environment, 2013, 21(2): 555–563
https://doi.org/10.1007/s10924-012-0548-9
11 Rodionova G, Saito  T, Lenes M ,  Eriksen Ø ,  Gregersen Ø ,  Fukuzumi H ,  Isogai A . Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose (London, England), 2012, 19(3): 705–711
https://doi.org/10.1007/s10570-012-9664-x
12 Puangsin B, Yang  Q, Saito T ,  Isogai A . Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules, 2013, 59: 208–213
https://doi.org/10.1016/j.ijbiomac.2013.04.016
13 Sehaqui H, Zhou  Q, Ikkala O ,  Berglund L A . Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 2011, 12(10): 3638–3644
https://doi.org/10.1021/bm2008907
14 Montanari S, Roumani  M, Heux L ,  Vignon M R . Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules, 2005, 38(5): 1665–1671
https://doi.org/10.1021/ma048396c
15 Wang H, Zhang  X, Jiang Z ,  Li W, Yu  Y. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products, 2015, 71: 80–88
https://doi.org/10.1016/j.indcrop.2015.03.086
16 Saito T, Isogai  A. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 2004, 5(5): 1983–1989
https://doi.org/10.1021/bm0497769
17 Smith D K, Bampton  R F, Alexander  W J. Use of new solvents for evaluating chemical cellulose for the viscose process. Industrial & Engineering Chemistry Process Design and Development, 1963, 2(1): 57–62
https://doi.org/10.1021/i260005a012
18 Segal L, Creely  J, Martin A  Jr,  Conrad C . An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 1959, 29(10): 786–794
https://doi.org/10.1177/004051755902901003
19 Scherrer P. Estimation of the size and internal structure of colloidal particles by means of röntgen.Nachr. Ges. Wiss. Gottingen, 1918, 2: 98–112
20 Jiang F, Esker  A R, Roman  M. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir, 2010, 26(23): 17919–17925
https://doi.org/10.1021/la1028405
21 Shinoda R, Saito  T, Okita Y ,  Isogai A . Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 2012, 13(3): 842–849
https://doi.org/10.1021/bm2017542
22 Jiang F, Hsieh  Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 2013, 95(1): 32–40
https://doi.org/10.1016/j.carbpol.2013.02.022
23 Fukuzumi H, Saito  T, Okita Y ,  Isogai A . Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation & Stability, 2010, 95(9): 1502–1508
https://doi.org/10.1016/j.polymdegradstab.2010.06.015
24 Da Silva Perez D ,  Montanari S ,  Vignon M R . TEMPO-mediated oxidation of cellulose III. Biomacromolecules, 2003, 4(5): 1417–1425
https://doi.org/10.1021/bm034144s
25 Isogai T, Saito  T, Isogai A . Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose (London, England), 2011, 18(2): 421–431
https://doi.org/10.1007/s10570-010-9484-9
26 Fukuzumi H, Saito  T, Iwata T ,  Kumamoto Y ,  Isogai A . Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 2008, 10(1): 162–165
https://doi.org/10.1021/bm801065u
27 Henriksson M, Berglund  L A, Isaksson  P, Lindström T ,  Nishino T . Cellulose nanopaper structures of high toughness. Biomacromolecules, 2008, 9(6): 1579–1585
https://doi.org/10.1021/bm800038n
[1] WANG Yuxin, LIU Congmin, ZHOU Yaping. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon [J]. Front. Chem. Sci. Eng., 2008, 2(4): 473-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed