Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 429-439    https://doi.org/10.1007/s11705-017-1675-6
RESEARCH ARTICLE
Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection
Xin Peng, Yang Tang, Wenli Du(), Feng Qian()
Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(531 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methods.

Keywords non-Gaussian processes      subspace projection      independent component analysis      locality preserving projection      finite mixture model     
Corresponding Author(s): Wenli Du,Feng Qian   
Just Accepted Date: 07 July 2017   Online First Date: 11 August 2017    Issue Date: 23 August 2017
 Cite this article:   
Xin Peng,Yang Tang,Wenli Du, et al. Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection[J]. Front. Chem. Sci. Eng., 2017, 11(3): 429-439.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1675-6
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/429
Fig.1  (a) 3-D clustering and toroidal helix dataset for manifold learning; Mapping output of ICA (b), LPP (c) and MSAGL (d)
Fig.2  Total posterior log-likelihood of synthetic process
Fig.3  Monitoring performance of illustrative synthetic example by MSAGL, PCA and LPP based mixture model
No. Test scenario
Case 1 Normal condition: sample 1?100, mode 3
Faulty condition: sample 101?200, mode 3
IDV5: step change in condenser cooling water temperature
Normal condition: sample 201?300, mode 2
Faulty condition: sample 301?400, mode 2
IDV12: random variation in condenser cooling water inlet temperature
Case 2 Normal condition: sample 1?100, mode 2
Faulty condition: sample 101?200, mode 2
IDV11: random variation in reactor cooling water temperature
Normal condition: sample 201?300, mode 1
Faulty condition: sample 301?400, mode 1
IDV6: step change in A feed loss (stream 1)
Case 3 Normal condition: sample 1?100, mode 1
Faulty condition: sample 101?200, mode 1
IDV11: reactor cooling water inlet temperature
Normal condition: sample 201?300, mode 2
Faulty condition: sample 301?400, mode 2
IDV13: slow drift in reaction kinetics
Tab.1  Three benchmark scenario of the TEP
Fig.4  D statistics monitoring performance of Case 1 in TEP by MSAGL, PCA and LPP based mixture model
Fig.5  D (I2) statistics monitoring performance of Case 2 in TEP by MSAGL, PCA and LPP based mixture model
Fig.6  D (I2) statistics monitoring performance of Case 3 in TEP by MSAGL, PCA and LPP based mixture model
Monitoring method Case 1 Case 2 Case 3
PCA mixture model 58.3 79.8 68.2
LPP mixture model 61.9 76 73.7
MSAGL mixture model 93.8 91.7 92.5
Tab.2  Comparison of fault detection (%) rates in three predefined cases of TEP
Monitoring method Case 1 Case 2 Case 3
PCA 38.1 17.6 36.7
LPP 18.2 10.4 16.9
MSAGL 0.6 4.0 6.1
Tab.3  Comparison of false alarm (%) rates in three predefined cases of TEP
1 Yin S, Shi  P, Yang H . Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Transactions on Cybernetics, 2016, 46(8): 1926–1938
https://doi.org/10.1109/TCYB.2015.2457894
2 Yin S, Zhu  X P, Qiu  J B, Gao  H J. State estimation in nonlinear system using sequential evolutionary filter. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3786–3794
https://doi.org/10.1109/TIE.2016.2522382
3 Yin S, Gao  H, Qiu J ,  Kaynak O . Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults. Automatica, 2017, 76: 282–292
https://doi.org/10.1016/j.automatica.2016.10.025
4 Tong C D, Shi  X H. Decentralized monitoring of dynamic processes based on dynamic feature selection and informative fault pattern dissimilarity. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3804–3814
https://doi.org/10.1109/TIE.2016.2530047
5 Stubbs S, Zhang  J, Morris J . Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers & Chemical Engineering, 2012, 41: 77–87
https://doi.org/10.1016/j.compchemeng.2012.02.009
6 Nomikos P, MacGregor  J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8): 1361–1375
https://doi.org/10.1002/aic.690400809
7 Xiao Z B, Wang  H G, Zhou  J W. Robust dynamic process monitoring based on sparse representation preserving embedding. Journal of Process Control, 2016, 40: 119–133
https://doi.org/10.1016/j.jprocont.2016.01.009
8 Qin S J. Statistical process monitoring: Basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480–502
https://doi.org/10.1002/cem.800
9 Ge Z Q, Song  Z H, Gao  F R. Review of recent research on data-based process monitoring. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543–3562
https://doi.org/10.1021/ie302069q
10 Dong D, McAvoy  T J. Nonlinear principal component analysis — based on principal curves and neural networks. Computers & Chemical Engineering, 1996, 20(1): 65–78
https://doi.org/10.1016/0098-1354(95)00003-K
11 Antory D, Irwin  G W, Kruger  U, McCullough G . Improved process monitoring using nonlinear principal component models. International Journal of Intelligent Systems, 2008, 23(5): 520–544
https://doi.org/10.1002/int.20281
12 Silva R G. Condition monitoring of the cutting process using a self-organizing spiking neural network map. Journal of Intelligent Manufacturing, 2010, 21(6): 823–829
https://doi.org/10.1007/s10845-009-0258-x
13 Wang B, Yan  X F, Jiang  Q C. Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring. Computers & Industrial Engineering, 2016, 94: 188–200
https://doi.org/10.1016/j.cie.2016.01.021
14 Ge Z, Song  Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial & Engineering Chemistry Research, 2007, 46(7): 2054–2063
https://doi.org/10.1021/ie061083g
15 Choi S W, Lee  I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59(24): 5897–5908
https://doi.org/10.1016/j.ces.2004.07.019
16 Zhang Y W, An  J Y, Zhang  H L. Monitoring of time-varying processes using kernel independent component analysis. Chemical Engineering Science, 2013, 88: 23–32
https://doi.org/10.1016/j.ces.2012.11.008
17 Kano M, Tanaka  S, Hasebe S ,  Hashimoto I ,  Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4): 969–976
https://doi.org/10.1002/aic.690490414
18 Zhang Y, Zhang  Y. Fault detection of non-Gaussian processes based on modified independent component analysis. Chemical Engineering Science, 2010, 65(16): 4630–4639
https://doi.org/10.1016/j.ces.2010.05.010
19 Ge Z Q, Xie  L, Kruger U ,  Song Z H . Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions. AIChE Journal, 2012, 58(8): 2357–2372
https://doi.org/10.1002/aic.12760
20 Hsu C C, Chen  M C, Chen  L S. A novel process monitoring approach with dynamic independent component analysis. Control Engineering Practice, 2010, 18(3): 242–253
https://doi.org/10.1016/j.conengprac.2009.11.002
21 Rashid M M, Yu  J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems, 2012, 115: 44–58
https://doi.org/10.1016/j.chemolab.2012.04.008
22 Costa J, Hero  A O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. Signal Processing. IEEE Transactions on, 2004, 52(8): 2210–2221
https://doi.org/10.1109/TSP.2004.831130
23 Lin T, Zha  H. Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 796–809
https://doi.org/10.1109/TPAMI.2007.70735
24 Tenenbaum J B ,  de Silva V ,  Langford J C . A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319–2323
https://doi.org/10.1126/science.290.5500.2319
25 Roweis S T, Saul  L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323–2326
https://doi.org/10.1126/science.290.5500.2323
26 Zhang Z Y, Zha  H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, 2004, 26(1): 313–338
https://doi.org/10.1137/S1064827502419154
27 He X, Niyogi  P. Locality preserving projections. In: Proceedings of the Neural Information Processing Systems. Neural Information Processing Systems Foundation. Cambridge: MIT Press, 2004, 153
28 Luo L. Process monitoring with global-local preserving projections. Industrial & Engineering Chemistry Research, 2014, 53(18): 7696–7705
https://doi.org/10.1021/ie4039345
29 Yu J, Qin  S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal, 2008, 54(7): 1811–1829
https://doi.org/10.1002/aic.11515
30 Fan M, Ge  Z Q, Song  Z H. Adaptive Gaussian mixture model-based relevant sample selection for JITL soft sensor development. Industrial & Engineering Chemistry Research, 2014, 53(51): 19979–19986
https://doi.org/10.1021/ie5029864
31 Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science, 2012, 68(1): 506–519
https://doi.org/10.1016/j.ces.2011.10.011
32 Wen Q, Ge  Z, Song Z . Data-based linear Gaussian state-space model for dynamic process monitoring. AIChE Journal, 2012, 58(12): 3763–3776
https://doi.org/10.1002/aic.13776
33 Ge Z, Kruger  U, Lamont L ,  Xie L, Song  Z. Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches. Mechanical Systems and Signal Processing, 2010, 24(8): 2972–2984
https://doi.org/10.1016/j.ymssp.2010.03.015
34 Hyvarinen A, Oja  E. Independent component analysis: Algorithms and applications. Neural Networks, 2000, 13(4-5): 411–430
https://doi.org/10.1016/S0893-6080(00)00026-5
35 Zhang M G, Ge  Z Q, Song  Z H, Fu  R W. Global-local structure analysis model and its application for fault detection and identification. Industrial & Engineering Chemistry Research, 2011, 50(11): 6837–6848
https://doi.org/10.1021/ie102564d
36 Figueiredo M A T ,  Jain A K . Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381–396
https://doi.org/10.1109/34.990138
37 Te-Won L, Lewicki  M S, Sejnowski  T J. ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1078–1089
https://doi.org/10.1109/34.879789
38 Downs J J, Vogel  E F. A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17(3): 245–255
https://doi.org/10.1016/0098-1354(93)80018-I
39 Lee J M, Qin  S J, Lee  I B. Fault detection and diagnosis based on modified independent component analysis. AIChE Journal, 2006, 52(10): 3501–3514
https://doi.org/10.1002/aic.10978
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed