Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 50-58    https://doi.org/10.1007/s11705-017-1685-4
RESEARCH ARTICLE
Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs
Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang()
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 Download: PDF(258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.

Keywords corncob      monolith      upgrading      pyrolysis     
Corresponding Author(s): Z. Conrad Zhang   
Just Accepted Date: 25 September 2017   Online First Date: 23 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Liaoyuan Mao,Yanxin Li,Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs[J]. Front. Chem. Sci. Eng., 2018, 12(1): 50-58.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1685-4
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/50
Fig.1  Schematic view of the bubbling bed reactor system for pyrolysis of biomass and in-situ upgrading of pyrolysis vapor
TC/°C WHSV/h?1 Yield (wt-% of corncob feed) Properties of dry oil
Liquid Solid Gas Losses Yield (wt-% of corncob feed) HHV/(MJ·kg?1) [O]/wt-%
500 ? 47.74 21.59 25.87 4.80 14.09 29.62 25.51
180 40.28 24.21 35.81 0.77 8.60 33.35 17.03
90 40.81 26.80 33.63 1.24 9.20 36.23 13.96
60 40.09 25.51 33.33 1.07 7.77 37.34 12.40
45 36.04 23.63 34.00 6.34 5.92 41.01 7.31
550 ? 48.47 23.19 28.62 0.29 13.85 31.07 17.56
180 39.61 24.05 35.18 1.16 8.82 33.60 12.22
90 38.18 22.34 37.41 2.08 8.17 33.70 13.11
60 36.71 24.23 37.35 1.71 6.32 34.88 8.10
45 34.84 23.98 40.93 0.24 4.77 39.61 13.52
600 ? 43.55 20.22 30.65 5.58 12.50 30.70 16.81
180 35.95 20.81 39.00 4.25 7.04 33.57 12.03
90 35.58 21.43 39.39 3.60 4.98 35.64 8.42
60 32.96 25.64 41.15 0.26 3.10 34.98 5.77
45 32.89 28.94 41.76 1.59 3.78 36.02 13.77
Tab.1  Product yields as a function of temperature and WHSV for ZCCH catalyzed pyrolysis of corncob
Fig.2  Yields as a function of WHSV for the ZCCH catalyzed pyrolysis of corncob. Yields refer to the mass of product divided by the mass of feedstock. Reaction conditions: TP= 500 °C; feeding rate of corncob is 15 g·min?1; 450 g silica sand was used as solid heat carrier in the fluidized bed; and 200 g biomass was fed per experiment. The residence time of stream flow in pyrolysis zone is 1.3 s (with a velocity of 0.8 m·s?1). The WHSV in the ZCCH upgrading zone was varied from 45 to 180 h?1. The WHSV was calculated according to a biomass feeding rate of 0.9 kg·h?1 and a weight of catalyst coated on ZCCH (5, 10, 15 and 20 g, respectively). A blank experiment was run in the absence of ZCCH or any other catalyst. Carrier gas: Pure N2. Key: (a) catalytic temperature at ZCCH is 500 °C, (b) temperature at ZCCH is 550 °C, (c) temperature at ZCCH is 600 °C. ■Light oxygenates, ●Furans, ▲Phenols, ▾Aromatics, ◆Benzofurans, ★CO, ▿CO2, △CH4, ◇C2-C6, □hydrocarbons (≥C2)
ZCCH Exposure time on stream/min Water /wt-% Liquid organics /wt-% Properties of dry oil
Yield (wt-% of corncob feed) HHV/(MJ·kg?1) [O]/wt-%
Without regeneration 40 15.91 20.48 6.20 39.05 9.72
80 30.05 16.32 6.37 37.57 16.57
120 22.05 14.00 6.34 36.59 17.16
160 15.90 24.78 9.51 35.40 15.69
200 17.68 22.28 8.72 32.62 17.18
240 21.99 21.85 11.87 30.22 17.22
With regeneration 40 15.91 20.48 6.20 39.05 9.72
80 19.67 18.69 7.37 40.08 7.22
120 30.94 11.01 7.41 38.38 11.14
160 30.27 12.89 7.41 39.21 10.68
200 28.00 12.32 7.91 37.43 10.25
240 27.41 11.83 7.61 38.65 9.15
320 28.76 11.45 7.76 38.09 12.73
440 32.30 9.50 9.49 38.48 10.61
Tab.2  Product yields and properties of dry oil as a function of catalyst exposure time on stream with or without regeneration
Fig.3  Effects of thermal regeneration of ZCCH on the product distribution. (a) Pyrolysis without catalyst regeneration; (b) ZCCH was regenerated at 550 °C every 40 min in air medium. Key: ■Light oxygenates, ● Furans, ▲Phenols, ▾Aromatics, ◆Benzofurans, ★ Total yield of dry oil
1 Huber G W, Chheda  J N, Barrett  C J, Dumesic  J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 2005, 308(5727): 2075–2078
https://doi.org/10.1126/science.1111166
2 Cortright R D,  Davda R R,  Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418(6901): 964–967
https://doi.org/10.1038/nature01009
3 Huber G W, Dumesic  J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111(1-2): 119–132
https://doi.org/10.1016/j.cattod.2005.10.010
4 Czernik S, Bridgwater  A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 2004, 18(2): 590–598
https://doi.org/10.1021/ef034067u
5 Huber G W, Ibarra  S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
https://doi.org/10.1021/cr068360d
6 Bridgwater A V,  Bridge S A. A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater A V, Grassi G, eds. Biomass Pyrolysis Liquids Upgrading and Utilisation. London: Elsevier Applied Science, 1991, 11–92
7 Zhang H, Carlson  T R, Xiao  R, Huber G W. Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry, 2012, 14(1): 98–110
https://doi.org/10.1039/C1GC15619E
8 Elliott D C, Beckman  D, Bridgwater A V,  Diebold J P,  Gevert S B,  Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983‒1990. Energy & Fuels, 1991, 5(3): 399–410
https://doi.org/10.1021/ef00027a008
9 Edward F. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
https://doi.org/10.1016/S0926-860X(99)00555-4
10 Valle B, Gayubo  A G, Atutxa  A, Alonso A,  Bilbao J. Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. International Journal of Chemical Reactor Engineering, 2007, 5(1): 1–13
https://doi.org/10.2202/1542-6580.1559
11 Gayubo A G, Valle  B, Aguayo A T,  Olazar M,  Bilbao J. Olefin production by catalytic transformation of crude bio-oil in a two-step process. Industrial & Engineering Chemistry Research, 2010, 49(1): 123–131
https://doi.org/10.1021/ie901204n
12 Srinivas S T, Dalai  A K, Bakhshi  N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Chemical Engineering Journal, 2000, 78(2): 343–354
13 Valle B, Atutxa  A, Aguayo A T,  Olazar M,  Gayubo A G. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 2005, 106(1-4): 118–122
https://doi.org/10.1016/j.cattod.2005.07.132
14 Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1): 298–312
https://doi.org/10.1016/S0021-9517(02)00132-X
15 Gayubo A G, Aguayo  A T, Atutxa  A, Aguado R,  Olazar M,  Bilbao J, Olazar M, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research, 2004, 43(11): 2619–2626
https://doi.org/10.1021/ie030792g
16 Aho A, Kumar  N, Eränen K,  Salmi T,  Hupa M, Murzin  D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel, 2008, 87(12): 2493–2501
https://doi.org/10.1016/j.fuel.2008.02.015
17 Alaitz A, Roberto  A, Ana G G,  Martin O,  Javier B. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy & Fuels, 2005, 19(3): 765–774
https://doi.org/10.1021/ef040070h
18 Lappas A A, Samolada  M C, Iatridis  D K, Voutetakis  S S, Vasalos  I A. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel, 2002, 81(16): 2087–2095
https://doi.org/10.1016/S0016-2361(02)00195-3
19 Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1-2): 298–312
https://doi.org/10.1016/S0021-9517(02)00132-X
20 Renaud M, Grandmaison  J L, Roy  C, Kaliaguine S. Low-Pressure Upgrading of Vacuum-Pyrolysis Oils from Wood. Pyrolysis Oils from Biomass. Washington DC: ACS, 1988, 290–310
21 Sharma R K, Bakhshi  N N. Catalytic upgrading of pyrolysis oil. Energy & Fuels, 1993, 7(2): 306–314
https://doi.org/10.1021/ef00038a022
22 Chantal P D, Kaliaguin  S, Grandmaison J L,  Mahay A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5. Applied Catalysis, 1984, 10(3): 317–332
https://doi.org/10.1016/0166-9834(84)80127-X
23 Carlson T R, Cheng  Y T, Jaea  J, Huber G W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy & Environmental Science, 2011, 4(1): 145–161
https://doi.org/10.1039/C0EE00341G
24 Williams P T, Horne  P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 1995, 31(2): 39–61
https://doi.org/10.1016/0165-2370(94)00847-T
25 Aho A, Kumar  N, Eränen K,  Hupa M, Salmi  T, Murzin D Y. Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis, 2008, 174(1): 1069–1074
https://doi.org/10.1016/S0167-2991(08)80071-7
26 Aho A, Kumar  N, Lashkul A V,  Eränen K,  Murzin D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel, 2010, 89(8): 1992–2000
https://doi.org/10.1016/j.fuel.2010.02.009
27 Adama J, Antonakoub  E, Lappasb A,  Stöckerc M,  Nilsenc M H,  Bouzgac A,  Hustada J E,  Øyed G. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 2006, 96(1-3): 93–101
https://doi.org/10.1016/j.micromeso.2006.06.021
28 Zhang Q, Chang  J, Wang T,  Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
https://doi.org/10.1016/j.enconman.2006.05.010
29 Diebold J P, Chum  H L, Evans  R J, Milne  T A, Reed  T B, Scahill  J W. In: Klass D L. ed. Energy from Biomass and Wastes X. London: IGT Chicago and Elsevier Applied Sciences Publishers, 1987,  801
30 Diebold J, Scahill  J. Biomass to gasoline: Upgrading pyrolysis vapors to aromatic gasoline with zeolites catalysis at atmospheric pressure. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 264–276
31 Diebold J P, Beckman  D, Bridgwater A V,  Elliott D C,  Solantausta Y. IEA technoeconomic analysis of the thermochemical conversion of biomass to gasoline by the NREL process. In: Bridgwater A V, ed. Advances in Thermochemical Biomass Conversion. Berlin: Springer Netherlands, 1994, 1325–1342
32 Evans R, Milne  T. Molecular-beam, mass spectrometric studies of wood vapor and model compounds over an HSZM-5 catalyst. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 311–327
33 French R, Czernik  S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 2010, 91(1): 25–32
https://doi.org/10.1016/j.fuproc.2009.08.011
34 Zhang Q, Chang  J, Wang T,  Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
https://doi.org/10.1016/j.enconman.2006.05.010
35 Stefanidis S D,  Kalogiannis K G,  Iliopoulou E F,  Lappas A A,  Pilavachi P A. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology, 2011, 102(17): 8261–8267
https://doi.org/10.1016/j.biortech.2011.06.032
36 Cybulski A, Moulijn  J. Monoliths in heterogeneous catalysis. Catalysis Reviews. Science and Engineering, 1994, 36(2): 179–270
https://doi.org/10.1080/01614949408013925
37 Evans R J, Milne  T A. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, Producing, Analysing and Upgrading. ACS Symposium Series 376. Washington DC: American Chemical Society, 1988, 328–341
38 Huber G W, Iborra  S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
https://doi.org/10.1021/cr068360d
39 Kharas K C, Robota  H J, Liu  D J. Deactivation in Cu-ZSM-5 lean-burn catalysts. Applied Catalysis B: Environmental, 1993, 2(2-3): 225–237
https://doi.org/10.1016/0926-3373(93)80050-N
40 Vitolo S, Bresci  B, Seggiani M,  Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel, 2001, 80(1): 17–26
https://doi.org/10.1016/S0016-2361(00)00063-6
41 Foster A J, Jae  J, Cheng Y T,  Huber G W,  Lobo R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A, General, 2012, 423-424: 154–161
https://doi.org/10.1016/j.apcata.2012.02.030
42 Li J, Li  X, Zhou G,  Wang W, Wang  C, Komarneni S,  Wang Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Applied Catalysis A, General, 2014, 470(2): 115–122
[1] Sainab Omar, Yang Yang, Jiawei Wang. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids[J]. Front. Chem. Sci. Eng., 2021, 15(1): 4-17.
[2] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[3] Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti. Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue[J]. Front. Chem. Sci. Eng., 2020, 14(2): 288-303.
[4] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[5] Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang. Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions[J]. Front. Chem. Sci. Eng., 2019, 13(4): 702-717.
[6] Vojtěch Turek, Bohuslav Kilkovský, Zdeněk Jegla, Petr Stehlík. Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Front. Chem. Sci. Eng., 2018, 12(4): 660-669.
[7] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[8] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[9] Shaolong WAN,Yong WANG. A review on ex situ catalytic fast pyrolysis of biomass[J]. Front. Chem. Sci. Eng., 2014, 8(3): 280-294.
[10] Anton ALVAREZ-MAJMUTOV,Jinwen CHEN. Analyzing the energy intensity and greenhouse gas emission of Canadian oil sands crude upgrading through process modeling and simulation[J]. Front. Chem. Sci. Eng., 2014, 8(2): 212-218.
[11] W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process[J]. Front Chem Sci Eng, 2014, 8(1): 104-113.
[12] Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate[J]. Front Chem Sci Eng, 2014, 8(1): 87-94.
[13] Ruixue GU, Guangming ZENG, Jingjing SHAO, Yuan LIU, Johannes W. Schwank, Yongdan LI. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Front Chem Sci Eng, 2013, 7(3): 270-278.
[14] Shengping WANG, Xin ZHANG, Yujun ZHAO, Yadong GE, Jing LV, Baowei WANG, Xinbin MA. Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure[J]. Front Chem Sci Eng, 2012, 6(3): 259-269.
[15] Quanyuan WEI, Yongshui QU, Tianwei TAN. Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project[J]. Front Chem Sci Eng, 2011, 5(3): 355-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed