Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 59-69    https://doi.org/10.1007/s11705-017-1686-3
RESEARCH ARTICLE
Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation
Shufeng Shan1, Haiyan Liu1(), Gang Shi1, Xiaojun Bao2
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
2. State Key Laboratory of Energy & Environmental Photocatalysis, Fuzhou University, Fuzhou 350116, China
 Download: PDF(547 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.

Keywords fluid catalytic cracking diesel      hydrofining performance      WMoNiP/Al2O3      synergetic effect and structure of NiWMoS phases     
Corresponding Author(s): Haiyan Liu,Xiaojun Bao   
Just Accepted Date: 25 September 2017   Online First Date: 05 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Shufeng Shan,Haiyan Liu,Gang Shi, et al. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1686-3
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/59
Fig.1  (A) XRD patterns of (a) WMoNi-HHD, (b) WMo-HHD-PNi and (c) WMo-IM-PNi; (B) DRS UV-vis spectra of (a) WMoNi-HHD, (b) WMo-HHD-PNi and (c) WMo-IM-PNi after subtracting the spectra of γ-Al2O3; and (C) Eg values of (a) WMoNi-HHD, (b) WMo-HHD-PNi and (c) WMo-IM-PNi
Sample Sga) /(m2•g?1) Vpb) /(mL·g?1) Dpc) /nm
γ-Al2O3 239.5 0.63 10.6
WMoNi-HHD 180.3 0.45 10.0
WMo-HHD-PNi 166.7 0.43 10.3
WMo-IM-PNi 155.3 0.38 9.8
Tab.1  Textural properties of Al2O3, WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Fig.2  NH3-TPD profiles of WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Fig.3  TPR spectra of WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Sample Surface atomic ratios and sulfidation degrees /% MS2 morphology parameters
W/Ala) Mo/Ala) Ni/Ala) Ni/(Ni+W+Mo)a) Wsulfidation Mosulfidation Lb) Nb) fMc)
WMoNi-HHD 0.048 0.036 0.045 0.350 42.6 60.1 3.9 2.4 0.29
WMo-HHD-PNi 0.042 0.033 0.041 0.354 56.1 88.7 4.1 2.7 0.28
WMo-IM-PNi 0.031 0.020 0.027 0.346 48.0 83.8 6.5 2.8 0.15
Tab.2  XPS and HRTEM results of the sulfided WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Fig.4  (A) Mo3d and (B) W4f XPS spectra of the sulfided WMoNi-HHD; (C) Mo3d and (D) W4f XPS spectra of the sulfided WMo-HHD-PNi, (E) Mo3d and (F) W4f XPS spectra of the sulfided WMo-IM-PNi
Fig.5  HRTEM images of the sulfided (A) WMoNi-HHD, (B) WMo-HHD-PNi and (C) WMo-IM-PNi
Fig.6  Distributions of (A) lengths and (B) number of layered MS2 (M= W or Mo) slabs on sulfided WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Feed and liquid product properties Diesel fuel Hydrofined diesel
WMoNi-HHD WMo-HHD-PNi WMo-IM-PNi
Hydrocarbon group compositions /wt-%
Saturated hydrocarbons 37.0 48.9 51.0 48.3
Resin 1.21 0.38 0.07 0.21
Aromatics 61.8 50.7 48.9 51.5
Mono-ring aromatics 24.0 39.2 40.6 39.1
Di-ring aromatics 30.9 8.9 7.6 8.8
Tri-ring aromatics 5.25 0.83 0.45 0.79
Paraffin 24.4 33.6 34.7 33.0
Naphthene 11.8 13.2 12.9 11.9
Mono-ring naphthene 5.6 4.2 3.8 4.6
Di-ring naphthene 4.9 6.2 5.9 4.7
Tri-ring naphthene 0.91 2.5 2.8 1.9
Alkyl Benzene 15.3 15.9 16.6 16.9
Naphthalene 21.6 6.3 5.7 7.4
Sulfur /(µg·g?1) 3904 12.4 9.7 136.6
HDS ratio /% - 99.7 99.8 96.5
Nitrogen /(µg·g?1) 1088 86.2 16.5 74.8
HDN ratio /% - 92.1 98.5 93.1
HDPA ratio /% - 73.1 77.7 73.5
Tab.3  Properties of FCC diesel fuel before and after hydrofining over WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi
Fig.7  (A) HDS and (B) HDN activity of WMoNi-HHD, WMo-HHD-PNi and WMo-IM-PNi using FCC diesel fuel
Fig.8  Schematic representation of the composition and morphology of the sulfide phases in (A) WMoNi-HHD, (B) WMo-HHD-PNi and (C) WMo-IM-PNi
1 Chen W, Maugé  F, van Gestel J,  Nie H, Li  D, Long X. Effect of modification of the alumina acidity on the properties of supporperties of supported Mo and CoMo sulfide catalysts. Journal of Catalysis, 2013, 304: 47–62
https://doi.org/10.1016/j.jcat.2013.03.004
2 Zepeda T A, Pawelec  B, Obeso-Estrella R,  Díaz de León J N, Fuentes S,  Alonso-Núñez G,  Fierro J L G. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Applied Catalysis B: Environmental, 2016, 180: 569–579
https://doi.org/10.1016/j.apcatb.2015.07.013
3 Díaz de León J N,  Zepeda T A,  Alonso-Nuñez G,  Galván D H,  Pawelec B,  Fuentes S. Insight of 1D γ-Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis, 2015, 321: 51–61
https://doi.org/10.1016/j.jcat.2014.11.001
4 Furimsky E, Massoth  F E. Hydrodenitrogenation of petroleum. Catalysis Reviews. Science and Engineering, 2005, 47(3): 297–489
https://doi.org/10.1081/CR-200057492
5 Pawelec B, Navarro  R M, Campos-Martin  J M, Fierro  J L G. Towards near zero-sulfur liquid fuels: A perspective review. Catalysis Science & Technology, 2011, 1(1): 23–42
https://doi.org/10.1039/c0cy00049c
6 Stanislaus A, Marafi  A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1-2): 1–68
https://doi.org/10.1016/j.cattod.2010.05.011
7 Cervantes-Gaxiola M E,  Arroyo-Albiter M,  Pérez-Larios A,  Balbuena P B,  Espino-Valencia J. Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an AlTiMg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel, 2013, 113: 733–743
https://doi.org/10.1016/j.fuel.2013.06.041
8 Thomazeau C, Geantet  C, Lacroix M,  Danot M,  Harlé V,  Raybaud P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1−xWxS2 active phases. Applied Catalysis A, General, 2007, 322: 92–97
https://doi.org/10.1016/j.apcata.2007.01.016
9 Plantenga F L,  Cerfontain R,  Eijsbouts S,  van Houtert F,  Anderson G H,  Miseo S,  Soled S,  Riley K,  Fujita K,  Inoue Y. 89 “Nebula”: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 2003, 145: 407–410
https://doi.org/10.1016/S0167-2991(03)80246-X
10 Park Y C, Oh  E S, Rhee  H K. Characterization and catalytic activity of WNiMo/Al2O3 catalyst for hydrodenitrogenation of pyridine. Industrial & Engineering Chemistry Research, 1997, 36(12): 5083–5089
https://doi.org/10.1021/ie970386v
11 van Haandel L,  Bremmer M,  Kooyman P J,  van Veen J A R,  Weber T,  Hensen E J M. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1−x)S2/Al2O3 catalysts. ACS Catalysis, 2015, 5(12): 7276–7287
https://doi.org/10.1021/acscatal.5b01806
12 Shan S, Liu  H, Yue Y,  Shi G, Bao  X. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic-organic hybrid nanocrystals. Journal of Catalysis, 2016, 344: 325–333
https://doi.org/10.1016/j.jcat.2016.09.019
13 Mushrush G W, Quintana  M A, Bauserman  J W, Willauer  H D. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality. Journal of Environmental Science and Health. Part A, 2011, 46(2): 176–180
14 Prins R. Catalytic hydrodenitrogenation. Advances in Catalysis, 2001, 46: 399–464
https://doi.org/10.1016/S0360-0564(02)46025-7
15 Kraus H, Prins  R. The effect of phosphorus on oxidic NiMo(CoMo)/γ-Al2O3 catalysts: A solid state NMR investigation. Journal of Catalysis, 1997, 170(1): 20–28
https://doi.org/10.1006/jcat.1997.1728
16 Daage M, Chianelli  R R. Structure-function relations in molybdenum sulfide catalysts: The “rim-edge” model. Journal of Catalysis, 1994, 149(2): 414–427
https://doi.org/10.1006/jcat.1994.1308
17 Topsøe H. The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A, General, 2007, 322: 3–8
https://doi.org/10.1016/j.apcata.2007.01.002
18 Sun M, Nicosia  D, Prins R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catalysis Today, 2003, 86(1-4): 173–189
https://doi.org/10.1016/S0920-5861(03)00410-3
19 Xiang C E, Chai  Y M, Fan  J, Liu C G. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355–360
https://doi.org/10.1016/S1872-5813(11)60026-1
20 Shi L, Zhang  Z H, Qiu  Z G, Guo  F, Zhang W,  Zhao L F. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar. Journal of Fuel Chemistry and Technology, 2015, 43(1): 74–80
https://doi.org/10.1016/S1872-5813(15)60007-X
21 Rashidi F, Sasaki  T, Rashidi A M,  Nemati Kharat A,  Jozani K J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. Journal of Catalysis, 2013, 299: 321–335
https://doi.org/10.1016/j.jcat.2012.11.012
22 Usman Y T, Kubota  T, Okamoto Y. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene. Applied Catalysis A, General, 2007, 328(2): 219–225
https://doi.org/10.1016/j.apcata.2007.06.020
23 Sigurdson S, Sundaramurthy  V, Dalai A K,  Adjaye J. Phosphorus promoted trimetallic NiMoW/γ-Al2O3 sulfide catalysts in gas oil hydrotreating. Journal of Molecular Catalysis A Chemical, 2008, 291(1-2): 30–37
https://doi.org/10.1016/j.molcata.2008.05.011
24 Han W, Yuan  P, Fan Y,  Shi G, Liu  H, Bai D,  Bao X. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor. Journal of Materials Chemistry, 2012, 22(48): 25340–25353
https://doi.org/10.1039/c2jm34979e
25 Shan S, Yuan  P, Han W,  Shi G, Bao  X. Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. Journal of Catalysis, 2015, 330: 288–301
https://doi.org/10.1016/j.jcat.2015.06.019
26 Fan Y, Lu  J, Shi G,  Liu H, Bao  X. Effect of synergism between potassium and phosphorus on selective hydrodesulfurization performance of Co-Mo/Al2O3 FCC gasoline hydro-upgrading catalyst. Catalysis Today, 2007, 125(3-4): 220–228
https://doi.org/10.1016/j.cattod.2007.02.022
27 Hensen E J M,  de Beer V H J,  van Veen J A R,  van Santen R A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catalysis Letters, 2002, 84(1-2): 59–67
https://doi.org/10.1023/A:1021024617582
28 Nikulshin P A,  Ishutenko D I,  Mozhaev A A,  Maslakov K I,  Pimerzin A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. Journal of Catalysis, 2014, 312: 152–169
https://doi.org/10.1016/j.jcat.2014.01.014
29 Ramírez J, Gutiérrez-Alejandre  A. Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3-TiO2 mixed oxides. Journal of Catalysis, 1997, 170(1): 108–122
https://doi.org/10.1006/jcat.1997.1713
30 Atanasova P, Tabakova  T, Vladov C,  Halachev T,  Lopez Agudo A. Effect of phosphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/alumina hydrotreating catalysts. Applied Catalysis A, General, 1997, 161(1-2): 105–119
https://doi.org/10.1016/S0926-860X(96)00392-4
31 Gutiérrez O Y,  Valencia D,  Fuentes G A,  Klimova T. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization. Journal of Catalysis, 2007, 249(2): 140–153
https://doi.org/10.1016/j.jcat.2007.04.014
32 Mogica-Betancourt J C,  López-Benítez A,  Montiel-López J R,  Massin L,  Aouine M,  Vrinat M,  Berhault G,  Guevara-Lara A. Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization. Journal of Catalysis, 2014, 313: 9–23
https://doi.org/10.1016/j.jcat.2014.02.009
33 Li Y, Pan  D, Yu C,  Fan Y, Bao  X. Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminum-content, highly ordered, and hydrothermally stable Al-SBA-15. Journal of Catalysis, 2012, 286: 124–136
https://doi.org/10.1016/j.jcat.2011.10.023
34 Campelo J M, Garcia  A, Luna D,  Marinas J M,  Romero A A. Characterization of acidity in AlPO4-Al2O3 (5–15 wt-% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta, 1995, 265: 103–110
https://doi.org/10.1016/0040-6031(95)02379-G
35 Ferdous D, Dalai  A K, Adjaye  J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part I. Synthesis and characterization. Applied Catalysis A, General, 2004, 260(2): 137–151
https://doi.org/10.1016/j.apcata.2003.10.010
36 Huirache-Acuña R,  Zepeda T A,  Rivera-Muñoz E M,  Nava R, Loricera  C V, Pawelec  B. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates. Fuel, 2015, 149: 149–161
https://doi.org/10.1016/j.fuel.2014.08.045
37 Fan Y, Xiao  H, Shi G,  Liu H, Qian  Y, Wang T,  Gong G, Bao  X. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts. Journal of Catalysis, 2011, 279(1): 27–35
https://doi.org/10.1016/j.jcat.2010.12.014
38 Nikulshin P A,  Salnikov V A,  Mozhaev A V,  Minaev P P,  Kogan V M,  Pimerzin A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. Journal of Catalysis, 2014, 309: 386–396
https://doi.org/10.1016/j.jcat.2013.10.020
39 Mendoza-Nieto J A,  Robles-Méndez F,  Klimova T E. Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catalysis Today, 2015, 250: 47–59
https://doi.org/10.1016/j.cattod.2014.05.002
40 Xie F Y, Gong  L, Liu X,  Tao Y T,  Zhang W H,  Chen S H,  Meng H, Chen  J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(3): 112–118
https://doi.org/10.1016/j.elspec.2012.01.004
41 Wachs I E, Kim  T, Ross E I. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalysis Today, 2006, 116(2): 162–168
https://doi.org/10.1016/j.cattod.2006.02.085
42 Fan Y, Xiao  H, Shi G,  Liu H, Bao  X. A novel approach for modulating the morphology of supported metal nanoparticles in hydrodesulfurization catalysts. Energy & Environmental Science, 2011, 4(2): 572–582
https://doi.org/10.1039/C0EE00379D
43 Amaya S L, Alonso-Núñez  G, Zepeda T A,  Fuentes S,  Echavarría A. Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2014, 148-149: 221–230
https://doi.org/10.1016/j.apcatb.2013.10.057
44 Hensen E J M,  Kooyman P J,  van der Meer Y,  van der Kraan A M,  de Beer V H J,  van Veen J A R,  van Santen R A. The relation between morphology and hydrotreating activity for supported MoS2 particles. Journal of Catalysis, 2001, 199(2): 224–235
https://doi.org/10.1006/jcat.2000.3158
45 Ferdous D, Dalai  A K, Adjaye  J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part II. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen. Applied Catalysis A, General, 2004, 260(2): 153–162
https://doi.org/10.1016/j.apcata.2003.10.009
46 Trejo F, Rana  M S, Ancheyta  J, Chávez S. Influence of support and supported phases on catalytic functionalities of hydrotreating catalysts. Fuel, 2014, 138: 104–110
https://doi.org/10.1016/j.fuel.2014.02.032
47 Zdražil M. Recent advances in catalysis over sulphides. Catalysis Today, 1988, 3(4): 269–365
https://doi.org/10.1016/0920-5861(88)87051-2
48 Wang I, Chang  R C. Catalytic hydrodesulfurization and hydrodenitrogenation over Co-Mo on TiO2-ZrO2-V2O5. Journal of Catalysis, 1989, 117(1): 266–274
https://doi.org/10.1016/0021-9517(89)90236-4
49 Stanislaus A, Cooper  B H. Aromatic hydrogenation catalysis: A review. Catalysis Reviews. Science and Engineering, 1994, 36(1): 75–123
https://doi.org/10.1080/01614949408013921
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed