Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 209-225    https://doi.org/10.1007/s11705-017-1688-1
RESEARCH ARTICLE
Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas
Stefania Moioli1(), Laura A. Pellegrini1, Paolo Vergani2, Fabio Brignoli2
1. Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
2. Maire Tecnimont S.p.A. Via Gaetano De Castillia 6/A, I-20124 Milano, Italy
 Download: PDF(679 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The growing use of energy by most of world population and the consequent increasing demand for energy are making unexploited low quality gas reserves interesting from an industrial point of view. To meet the required specifications for a natural gas grid, some compounds need to be removed from the sour stream. Because of the high content of undesired compounds (i.e., CO2) in the stream to be treated, traditional purification processes may be too energy intensive and the overall system may result unprofitable, therefore new technologies are under study. In this work, a new process for the purification of natural gas based on a low temperature distillation has been studied, focusing on the dynamics of the system. The robustness of the process has been studied by dynamic simulation of an industrial-scale plant, with particular regard to the performances when operating conditions are changed. The results show that the process can obtain the methane product with a high purity and avoid the solidification of carbon dioxide.

Keywords CO2 capture      innovative process      cryogenic distillation      dynamic simulation      solid-liquid-vapor equilibrium     
Corresponding Author(s): Stefania Moioli   
Just Accepted Date: 25 September 2017   Online First Date: 26 December 2017    Issue Date: 09 May 2018
 Cite this article:   
Stefania Moioli,Laura A. Pellegrini,Paolo Vergani, et al. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1688-1
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/209
Fig.1  Process flowsheet
Unit Section P/bar
High pressure column top 46
Low pressure column top 40
Tab.1  Operating conditions of the two columns of the plant
Parameter Value
Temperature /°C 27.64
Pressure /bar 62.01
Vapor fraction 1
Molar flow /(kmol?h?1) 10000
Composition (molar fraction)
Methane 0.6300
Carbon dioxide 0.2500
Nitrogen 0.0090
Ethane 0.0210
Hydrogen sulfide 0.0700
Propane 0.0126
n-Butane 0.0074
Tab.2  Characteristics of the stream fed to the plant
Fig.2  Process flowsheet as simulated in ASPEN HYSYS®
Parameter Top product Bottom product
Temperature /°C −88.11 15.31
Pressure /bar 40 47.03
Vapor fraction 1 0
Molar flow /(kmol?h?1) 6390 3611
Composition (molar fraction)
Methane 0.98584715 1.09E−04
Carbon dioxide 6.65E−05 0.692448
Nitrogen 0.01409 ?
Ethane ? 0.05815
Hydrogen sulfide ? 0.19390
Propane ? 0.03490
n-Butane ? 0.02050
Tab.3  Characteristics of the streams obtained as products of the two columns
Controller Kc tI /min tD /min
FC-309 0.4 0.5 0
PC-C301 10 1 0
PC-V301 10 1 0
TC-320 3 0.2 0
TC-322 5 0.1 0
LC-E301 2 2 0
LC-V301 3 2 0
LC-C301 2 2 0
LC-C302 2 2 0
RefluxC-C301 0.05 1 0
BoilupC-C301 0.1 1 0
Tab.4  Values of parameters of controllers considered for the simulations
Fig.3  Impulse to the carbon dioxide molar fraction in the feed stream (left axis) and response of carbon dioxide molar fraction in the liquid stream from the bottom of the low pressure column (right axis)
Stream/holdup T /°C Tfreeze /°C DTfreeze = T-Tfreeze /°C
C-301 (tray 1) −75.40 −111.8 36.41
C-301 (tray 2) −70.45 −111.8 41.36
C-301 (tray 3) −61.97 −111.8 49.83
321 −83.54 −94.6 11.06
322 −84.55 −94.32 9.769
C-302 (tray 30) −82.83 −87.83 5.001
C-302 (tray 29) −84.06 −111.8 27.76
323 −82.74 −87.88 5.139
Tab.5  Comparison between the operating temperature and the freezing temperature in sections of the plant where a solid phase may form, as resulting from simulations with ASPEN HYSYS®
Fig.4  Detail of splitting of the stream exiting from the high pressure column as simulated in ASPEN HYSYS®
Fig.5  Pressure drops for the vapor and the liquid streams fed to the low pressure distillation column
Fig.6  Difference between the actual temperature and the freezing temperature profiles for (a) feedback control by acting on stream 317 (liquid stream), (b) for feedforward control by acting on stream 317 (liquid stream), (c) for feedback control by acting on stream 318 (vapor stream) and (d) for feedforward control by acting on stream 318 (vapor stream)
Fig.7  Actual temperature and freezing temperature profiles for feedforward control by acting on stream 318 (vapor stream)
Fig.8  (a) Temperature profile of column C-301, (b) temperature profile of column C-302, (c) temperature of vapor stream 320 fed to column C-302, (d) temperature profile of liquid stream 322 fed to column C-302; freezing conditions in the lowest tray of column C-302, expressed as (e) DTfreeze and as (f) the operating temperature and the freezing temperature
Fig.9  (a) Temperature of vapor stream 320 fed to column C-302 and (b) top pressure of column C-301
Fig.10  (a) Temperature profile of column C-301, (b) pressure profile of column C-301, (c) temperature of vapor stream 320 fed to column C-302; freezing conditions in the lowest tray of column C-302, expressed as (d) DTfreeze and as (e) the operating temperature and the freezing temperature; (f) temperature profile of column C-302 and (g) pressure profile of column C-302
Fig.11  (a) CO2 content in the distillate stream and (b) CH4 content in the bottom stream
1 Burgers W F J, Northrop P S, Kheshgi H S, Valencia J A. Worldwide development potential for sour gas. Energy Procedia, 2011, 4: 2178–2184
https://doi.org/10.1016/j.egypro.2011.02.104
2 Ravanchi M, Sahebdelfar S, Zangeneh F. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Frontiers of Chemical Science and Engineering, 2011, 5(2): 173–178
https://doi.org/10.1007/s11705-010-0562-1
3 Rufford T E, Smart S, Watson G C Y, Graham B F, Boxall J, Diniz da Costa J C, May E F. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science Engineering, 2012, 94-95: 123–154
https://doi.org/10.1016/j.petrol.2012.06.016
4 Mumford K A, Wu Y, Smith K H, Stevens G W. Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141
https://doi.org/10.1007/s11705-015-1514-6
5 Wang M, Yang D, Wang Z, Wang J, Wang S. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2010, 4(2): 127–132
https://doi.org/10.1007/s11705-009-0231-4
6 Xiao Y, Low B T, Hosseini S S, Chung T S, Paul D R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Progress in Polymer Science, 2009, 34(6): 561–580
https://doi.org/10.1016/j.progpolymsci.2008.12.004
7 Yong W F, Li F Y, Chung T S, Tong Y W. Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13914–13925
https://doi.org/10.1039/c3ta13308g
8 Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
https://doi.org/10.1021/ie071083w
9 Wu Y, Wang Y, Zeng Q, Gong X, Yu Z. Experimental study on capturing CO2 greenhouse gas by mixture of ammonia and soil. Frontiers of Chemical Engineering in China, 2009, 3(4): 468–473
https://doi.org/10.1007/s11705-009-0257-7
10 Olajire A A. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry. Frontiers of Chemical Science and Engineering, 2013, 7(3): 366–380
https://doi.org/10.1007/s11705-013-1340-7
11 Kohl A L, Nielsen R. Gas Purification. 5th ed. Houston: Gulf Publishing Company, Book Division, 1997
12 GPSA. Engineering Data Book. 12th Edition. Tulsa: Gas Processors Suppliers Association, 2004
13 Moioli S, Pellegrini L A. Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis. Frontiers of Chemical Science and Engineering, 2016, 10(1): 162–175
https://doi.org/10.1007/s11705-016-1555-5
14 Moioli S, Pellegrini L A. Improved rate-based modeling of the process of CO2 capture with PZ solution. Chemical Engineering Research & Design, 2015, 93: 611–620
https://doi.org/10.1016/j.cherd.2014.03.022
15 Moioli S. The rate-based modelling of CO2 removal from the flue gases of power plants. WIT Transactions on Ecology and the Environment, 2014, 186: 635–646
https://doi.org/10.2495/ESUS140561
16 Moioli S, Pellegrini L A. Physical properties of PZ solution used as a solvent for CO2 removal. Chemical Engineering Research & Design, 2015, 93: 720–726
https://doi.org/10.1016/j.cherd.2014.06.016
17 Moioli S, Nagy T, Langé S, Pellegrini L A, Mizsey P. Simulation model evaluation of CO2 capture by aqueous MEA scrubbing for heat requirement analyses. Energy Procedia, 2017, 114: 1558–1566
https://doi.org/10.1016/j.egypro.2017.03.1286
18 Nagy T, Moioli S, Langé S, Pellegrini L A, Mizsey P. Improvement of post-combustion carbon capture process in retrofit case. Energy Procedia, 2017, 114: 1567–1575
https://doi.org/10.1016/j.egypro.2017.03.1287
19 Langé S. Purification of natural gas by means of a new low temperature distillation process. Dissertation for the Doctoral Degree. Milano: Politecnico di Milano, 2015, 1–299
20 Olajire A A. CO2 capture and separation technologies for end-of-pipe applications—A review. Energy, 2010, 35(6): 2610–2628
https://doi.org/10.1016/j.energy.2010.02.030
21 Langé S, Moioli S, Pellegrini L A. Vapor-liquid equilibrium and enthalpy of absorption of the CO2-MEA-H2O system. Chemical Engineering Transactions, 2015, 43: 1975–1980
22 Hochgesand G. Rectisol and purisol. Industrial & Engineering Chemistry, 1970, 62(7): 37–43
https://doi.org/10.1021/ie50727a007
23 Holmes A S, Ryan J M. Cryogenic distillative separation of acid gases from methane. US Patent, 4318723, 1982-03-09
24 Holmes A S, Ryan J M. Distillative separation of carbon dioxide from light hydrocarbons. US Patent, 4350511, 1982-09-21
25 Holmes A S, Price B C, Ryan J M, Styring R E. Pilot tests prove out cryogenic acid-gas/hydrocarbon separation processes. Oil & Gas Journal, 1983, 27: 85–91
26 Haut R C, Denton R D, Thomas E R. Development and application of the controlled-freeze-zone process. SPE Production Engineering, 1989, 4(3): 265–271
https://doi.org/10.2118/17700-PA
27 Michael E, Parker P E, Northrop S, Valencia J A, Foglesong R E, Duncan W T. CO2 management at ExxonMobil’s LaBarge field, Wyoming, USA. Energy Procedia, 2011, 4: 5455–5470
https://doi.org/10.1016/j.egypro.2011.02.531
28 Northrop P S, Valencia J A. The CFZ™ process: A cryogenic method for handling high-CO2 and H2S gas reserves and facilitating geosequestration of CO2 and acid gases. Energy Procedia, 2009, 1(1): 171–177 doi:10.1016/j.egypro.2009.01.025
29 Valencia J A, Denton R D. Method and apparatus for separating carbon dioxide and other acid gases from methane by the use of distillation and a controlled freeze zone. US Patent, 4533372, 1985-06-08
30 Valencia J A, Victory D J. Method and apparatus for cryogenic separation of carbon dioxide and other acid gases from methane. US Patent, 4923493, 1990-05-08
31 Valencia J A, Victory D J. Bubble cap tray for melting solids and method for using same. US Patent, 5265428, 1993-11-30
32 Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas. Energy Procedia, 2009, 1(1): 697–706
https://doi.org/10.1016/j.egypro.2009.01.092
33 Lallemand F, Perdu G, Normand L, Weiss C, Magne-Drisch J, Gonnard S. Extending the treatment of highly sour gases: Cryogenic distillation, digital refining. Processing. Operation and Maintenance, 2014, 2014: 1–2
34 Kelley B T, Valencia J A, Northrop P S, Mart C J. Controlled Freeze Zone™ for developing sour gas reserves. Energy Procedia, 2011, 4: 824–829
https://doi.org/10.1016/j.egypro.2011.01.125
35 Langé S, Pellegrini L A, Vergani P, Lo Savio M. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770–9782
https://doi.org/10.1021/acs.iecr.5b02211
36 Pellegrini L A. Process for the removal of CO2 from acid gas. Google Patents, WO 2014054945 A2, 2014-04-10
37 Baccanelli M. Analisi tecno-economica di soluzioni di processo a bassa temperatura per la produzione di LNG. Dissertation for the Master Degree. Milano: Politecnico di Milano, 2015 (in Italian)
38 AspenTech. ASPEN HYSYS®. Burlington, MA: AspenTech, 2014
39 Pellegrini L A, Moioli S, Brignoli F, Bellini C. LNG technology: The weathering in above-ground storage tanks. Industrial & Engineering Chemistry Research, 2014, 53(10): 3931–3937
https://doi.org/10.1021/ie404128d
40 Donnelly H G, Katz D L. Phase equilibria in the carbon dioxide–methane system. Industrial & Engineering Chemistry, 1954, 46(3): 511–517
https://doi.org/10.1021/ie50531a036
41 Sobocinski D P, Kurata F. Heterogeneous phase-equilibria of the hydrogen sulfide-carbon dioxide system. AIChE Journal. American Institute of Chemical Engineers, 1959, 5(4): 545–551
https://doi.org/10.1002/aic.690050425
42 Davis J A, Rodewald N, Kurata F. Solid-liquid-vapor phase behavior of the methane-carbon dioxide system. AIChE Journal. American Institute of Chemical Engineers, 1962, 8(4): 537–539
https://doi.org/10.1002/aic.690080423
43 Im U K, Kurata F. Phase equilibrium of carbon dioxide and light paraffins in presence of solid carbon dioxide. Journal of Chemical & Engineering Data, 1971, 16(3): 295–299
https://doi.org/10.1021/je60050a018
44 Shen T T, Gao T, Lin W S, Gu A Z. Determination of CO2 solubility in saturated liquid CH4 + N2 and CH4 + C2H6 mixtures above atmospheric pressure. Journal of Chemical & Engineering Data, 2012, 57(8): 2296–2303
https://doi.org/10.1021/je3002859
45 Cheung H, Zander E H. Solubility of carbon dioxide and hydrogen sulfide in liquid hydrocarbons at cryogenic temperatures. Chemical Engineering Symposium Series, 1968, 64(88): 34–37
46 Brewer J, Kurata F. Freezing points of binary mixtures of methane. AIChE Journal. American Institute of Chemical Engineers, 1958, 4(3): 317–321
https://doi.org/10.1002/aic.690040316
47 Streich M N. 2 removal from natural gas. Hydrocarbon Processing, 1970, 49(4): 86–88
48 Yokozeki A. Analytical equation of state for solid-liquid-vapor phases. International Journal of Thermophysics, 2003, 24(3): 589–620
https://doi.org/10.1023/A:1024015729095
49 Stephanopoulos G. Chemical Process Control: An Introduction to Theory and Practice.  New Jersey: Prentice Hall, 1984
50 Metz B, Davidson O, de Conik H, Loos M, Meyer L. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2005
51 Perry R H, Green D W. Perry's Chemical Engineers' Handbook. 7th ed. Singapore: McGraw-Hill International Editions, 1997
[1] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[2] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[3] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[4] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[5] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[6] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[7] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed