Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 306-310    https://doi.org/10.1007/s11705-017-1690-7
COMMUNICATION
Tetrazole tethered polymers for alkaline anion exchange membranes
Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu()
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

Keywords anion exchange membrane      fuel cell      phase separation      tetrazole     
Corresponding Author(s): Tongwen Xu   
Just Accepted Date: 30 October 2017   Online First Date: 26 February 2018    Issue Date: 09 May 2018
 Cite this article:   
Erigene Bakangura,Yubin He,Xiaolin Ge, et al. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1690-7
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/306
Fig.1  Illustration and chemical structures of tetrazole supported to quaternized poly (2,6-dimethyl-1,4-phenylene oxide)
Samples SD /% IECa,b) /(meq·g?1) WUb) /% λb) σ OH1 /(mS·cm?1)
t-QBTTPPO-15 15 0.62 5.9 5.28 6.72
t-QBTTPPO-20 20 0.91 9.4 5.73 10.6
t-QBTTPPO-25 25 1.11 12.1 6.11 14.7
t-QBTTPPO-30 30 1.32 16.7 6.72 23.18
QPPO-25 25 1.49 48.7 18.15 12.9
Tab.1  Electrochemical properties of t-QBTTPPO-x membranes at 25 °C
Fig.2  Water uptakes (a) and swelling ratios (b) of the t-QBTTPPO-30 and QPPO-25 vs. temperature
Fig.3  (a) Hydroxide conductivities of the t-QBTTPPO-30 and QPPO-25 vs. temperature, and (b) the Arrhenius plot
1 Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, et al.. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
https://doi.org/10.1021/cr050182l
2 McLean G F, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002, 27(5): 507–526
https://doi.org/10.1016/S0360-3199(01)00181-1
3 Gair S, Cruden A, McDonald J, Hegarty T, Chesshire M. Fuel cells for power generation and waste treatment. Journal of Power Sources, 2006, 154(2): 472–478 doi:10.1016/j.jpowsour.2005.10.075
4 Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells (Weinheim), 2005, 5(2): 187–200
https://doi.org/10.1002/fuce.200400045
5 Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191
https://doi.org/10.1039/C4EE01303D
6 Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1-2): 1–35
https://doi.org/10.1016/j.memsci.2011.04.043
7 Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014, 7(1): 354–360
https://doi.org/10.1039/C3EE43275K
8 Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy & Environmental Science, 2012, 5(7): 7888–7892
https://doi.org/10.1039/c2ee22050d
9 Li N, Leng Y, Hickner M A, Wang C Y. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society, 2013, 135(27): 10124–10133
https://doi.org/10.1021/ja403671u
10 Li Q, Liu L, Miao Q, Jin B, Bai R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 2014, 50(21): 2791–2793
https://doi.org/10.1039/c3cc47897a
11 Ran J, Wu L, Wei B, Chen Y, Xu T. Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Scientific Reports, 2014, 4(1): 6486
https://doi.org/10.1038/srep06486
12 Ran J, Wu L, Xu T. Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4(17): 4612–4620
https://doi.org/10.1039/c3py00421j
13 Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown N B, Guiver M D, Wu L, Xu T. Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angewandte Chemie International Edition in English, 2016, 55(38): 11499–11502
https://doi.org/10.1002/anie.201605916
14 Hickner M A, Herring A M, Coughlin E B. Anion exchange membranes: Current status and moving forward. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1727–1735
https://doi.org/10.1002/polb.23395
15 He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. A novel methodology to synthesize highly conductive anion exchange membranes. Scientific Reports, 2015, 5(1): 13417
https://doi.org/10.1038/srep13417
16 Si J, Lu S, Xu X, Peng S, Xiu R, Xiang Y. A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell: Design, synthesis, and properties. ChemSusChem, 2014, 7(12): 3389–3395
https://doi.org/10.1002/cssc.201402664
17 Pan J, Zhu L, Han J, Hickner M A. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 2015, 27(19): 6689–6698
https://doi.org/10.1021/acs.chemmater.5b02557
18 Ran J, Wu L, Ge Q, Chen Y, Xu T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470: 229–236
https://doi.org/10.1016/j.memsci.2014.07.036
19 Wu L, Pan Q, Varcoe J R, Zhou D, Ran J, Yang Z, Xu T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490: 1–8
https://doi.org/10.1016/j.memsci.2015.04.046
20 Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability. Chemical Communications, 2014, 50(31): 4092–4095
https://doi.org/10.1039/c3cc49027k
21 Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12284–12296
https://doi.org/10.1039/C5TA01420D
22 Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 15015–15019
https://doi.org/10.1039/C5TA02941D
23 Han J, Peng H, Pan J, Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Applied Materials & Interfaces, 2013, 5(24): 13405–13411
https://doi.org/10.1021/am4043257
24 Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 2012, 5(5): 843–848
https://doi.org/10.1002/cssc.201200057
25 Li N, Guiver M D, Binder W H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem, 2013, 6(8): 1376–1383
https://doi.org/10.1002/cssc.201300320
26 Song M K, Li H, Li J, Zhao D, Wang J, Liu M. Tetrazole-based, anhydrous proton exchange membranes for fuel cells. Advanced Materials, 2014, 26(8): 1277–1282
https://doi.org/10.1002/adma.201304121
27 Gao H, Shreeve J M. Azole-based energetic salts. Chemical Reviews, 2011, 111(11): 7377–7436
https://doi.org/10.1021/cr200039c
28 Karaghiosoff K, Klapötke T M, Mayer P, Sabaté C M, Penger A, Welch J M. Salts of methylated 5-aminotetrazoles with energetic anions. Inorganic Chemistry, 2008, 47(3): 1007–1019
https://doi.org/10.1021/ic701832z
29 Klapötke T M, Miró Sabaté C, Penger A, Rusan M, Welch J M. Energetic salts of low-symmetry methylated 5-aminotetrazoles. European Journal of Inorganic Chemistry, 2009, 2009(7): 880–896
https://doi.org/10.1002/ejic.200800995
30 Lu D, Winter C H. Complexes of the [K(18-Crown-6)]+ fragment with bis(tetrazolyl)borate ligands: unexpected boron-nitrogen bond isomerism and associated enforcement of k3-N,N′,H-ligand chelation. Inorganic Chemistry, 2010, 49(13): 5795–5797
https://doi.org/10.1021/ic100959j
31 Allen F H, Groom C R, Liebeschuetz J W, Bardwell D A, Olsson T S G, Wood P A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: The structural basis for tetrazole-carboxylic acid bioisosterism. Journal of Chemical Information and Modeling, 2012, 52(3): 857–866
https://doi.org/10.1021/ci200521k
32 Tsarevsky N V, Bernaerts K V, Dufour B, Du Prez F E, Matyjaszewski K. Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 2004, 37(25): 9308–9313
https://doi.org/10.1021/ma048207q
33 Tsai T H, Maes A M, Vandiver M A, Versek C, Seifert S, Tuominen M, Liberatore M W, Herring A M, Coughlin E B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1751–1760
https://doi.org/10.1002/polb.23170
34 Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications, 2000, 2(10): 697–702
https://doi.org/10.1016/S1388-2481(00)00107-7
[1] Supplementary Material 1 Download
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials[J]. Front. Chem. Sci. Eng., 2018, 12(1): 162-173.
[3] Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang. Formation of microporous polymeric membranes via thermally induced phase separation: A review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 57-75.
[4] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
[5] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[6] Soumya Pandit, Balachandar G, Debabrata Das. Improved energy recovery from dark fermented cane molasses using microbial fuel cells[J]. Front Chem Sci Eng, 2014, 8(1): 43-54.
[7] Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG. Modeling nanostructured catalyst layer in PEMFC and catalyst utilization[J]. Front Chem Sci Eng, 2011, 5(3): 297-302.
[8] ZHANG Xiujuan, XU Yuanze, YI Xiaosu. Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems[J]. Front. Chem. Sci. Eng., 2008, 2(3): 276-285.
[9] GAO Qijun, HUANG Mianyan, WANG Yuxin, CAI Yuquan, XU Li. Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes for direct methanol fuel cells[J]. Front. Chem. Sci. Eng., 2008, 2(1): 95-101.
[10] ZHONG Li, LUO Jingli, Karl Chuang. Fabrication and performance of PEN SOFCs with proton-conducting electrolyte[J]. Front. Chem. Sci. Eng., 2007, 1(1): 40-44.
[11] WANG Zhenbo, YIN Geping, SHI Pengfei. Preparation and influence of performance of anodic catalysts for direct methanol fuel cell[J]. Front. Chem. Sci. Eng., 2007, 1(1): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed