Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 83-93    https://doi.org/10.1007/s11705-017-1691-6
RESEARCH ARTICLE
Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures
Huimei Yu1,2,3, Xiaoxing Wang1(), Zhu Shu2, Mamoru Fujii1, Chunshan Song1()
1. EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park 16802, USA
2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3. East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(462 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg-CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.

Keywords CO2 capture      MgO sorbents      Al2O3      CeO2      flue gas     
Corresponding Author(s): Xiaoxing Wang,Chunshan Song   
Just Accepted Date: 30 October 2017   Online First Date: 11 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Huimei Yu,Xiaoxing Wang,Zhu Shu, et al. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1691-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/83
Sample Mg/M molar ratio T/°C CO2 capacity/(mg-CO2·g-S1) Ref.
MgO ? 200 12.9 This study
Al2O3-MgO 9 200 15.9 This study
3 20.1
1 17.0
1/3 14.9
Al2O3 ? 200 12.3 This study
CeO2-MgO 9 200 18.2 This study
3 35.3
1 24.8
1/3 19.5
CeO2 ? 200 12.7 This study
MgO ? 200 9.0 [43]
MgO/g-Al2O3 1.4 200 37 [43]
g-Al2O3 ? 200 6.0 [43]
MgO/Al2O3 0.14 150 21.6 [31]
Mg-Al HTlc 1.8 200 10.6 [44]
Mg-Al HTlc 2.1 200 5.3 [44]
Mg-Al HTlc 3.2 200 36.5 [45]
MgO-ZrO2 0.5 150 44.4 [46]
Tab.1  CO2 sorption capacity of pure MgO, Al2O3, CeO2 and Al2O3- and CeO2-pormoted MgO sorbentsa)
Fig.1  N2 adsorption isotherms of (a) pure MgO, (b) Al2O3-MgO, (c) Al2O3, (d) CeO2-MgO and (e) CeO2
Sample SBET /(m2·g1) Pore volume/ (cm3·g1) Pore sizea)/nm MgO crystallite sizeb)/nm
MgO 83 0.84 59.5 14.3±1.1
Al2O3 284 0.47 3.8 ?
CeO2 96 0.27 3.7 ?
Al2O3-MgO (1:3) 200 0.41 7.0 4.9±0.3
CeO2-MgO (1:3) 107 0.30 4.9 13.6±1.2
Tab.2  The porous properties of MgO, Al2O3, CeO2, Al2O3-MgO and CeO2-MgO
Fig.2  The BJH pore size distribution curves for (a) pure MgO, (b) CeO2-MgO, (c) CeO2, (d) Al2O3-MgO and (e) Al2O3
Fig.3  XRD patterns of (a) pure MgO, (b) Al2O3-MgO, (c) Al2O3, (d) CeO2-MgO and (e) CeO2
Fig.4  SEM and EDS results for (a) pure MgO, (b) Al2O3-MgO and (c) CeO2-MgO
Fig.5  SEM X-ray elemental mapping images of (a) CeO2-MgO and (b) Al2O3-MgO
Fig.6  CO2-TPD profiles of (a) pure MgO, (b) Al2O3-MgO and (c) CeO2-MgO samples. CO2 sorption was conducted at 200°C with pure CO2 flow at 20 mL/min for 20 min
Fig.7  CO2 uptake measured by CO2-TPD as a function of sorption temperature over (a) pure MgO, (b) Al2O3-MgO and (c) CeO2-MgO
Fig.8  CO2 capacity measured by CO2-TPD as a function of sorption-desorption cycles over (a) pure MgO, (b) Al2O3-MgO and (c) CeO2-MgO
Fig.9  SEM images of (a) spent MgO, (b) spent Al2O3-MgO and (c) spent CeO2-MgO sorbents after 15 cycles of CO2 sorption-desorption
1 Williams J H, DeBenedictis  A, Ghanadan R,  Mahone A,  Moore J,  Morrow W R,  Price S,  Torn M S. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science, 2012, 335(6064): 53–59
https://doi.org/10.1126/science.1208365
2 Ma X L, Wang  X X, Song  C S. “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009, 131(16): 5777–5783
https://doi.org/10.1021/ja8074105
3 Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115(1-4): 2–32
https://doi.org/10.1016/j.cattod.2006.02.029
4 Sema T, Naami  A, Liang Z W,  Shi H C,  Layer A V,  Sumon K Z,  Wattanaphan P,  Henni A,  Idem R, Saiwan  C, Tontiwachwuthikul P. Part 5b: Solvent chemistry: Reaction kinetics of CO2 absorption into reactive amine solutions. Carbon Management, 2012, 3(2): 201–220
https://doi.org/10.4155/cmt.12.13
5 Wilson M, Tontiwachwuthikul  P, Chakma A,  Idem R, Veawab  A, Aroonwilas A,  Gelowitz D,  Barrie J,  Mariz C. Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station. Energy, 2004, 29(9-10): 1259–1267
https://doi.org/10.1016/j.energy.2004.03.085
6 Krull F F, Fritzmann  C, Melin T. Liquid membranes for gas/vapor separation. Journal of Membrane Science, 2008, 325(2): 509–519
https://doi.org/10.1016/j.memsci.2008.09.018
7 Aaron D, Tsouris  C. Separation of CO2 from flue gas: A review. Separation Science and Technology, 2005, 40(1-3): 321–348
https://doi.org/10.1081/SS-200042244
8 Meratla Z. Combining cryogenic flue gas emission remediation with a CO2/O2 combustion cycle. Energy Conversion and Management, 1997, 38: S147–S152
https://doi.org/10.1016/S0196-8904(96)00261-0
9 D’Alessandro D M,  Smit B, Long  J R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082
https://doi.org/10.1002/anie.201000431
10 Sevilla M, Fuertes  A B. CO2 adsorption by activated templated carbons. Journal of Colloid and Interface Science, 2012, 366(1): 147–154
https://doi.org/10.1016/j.jcis.2011.09.038
11 Chen Z H, Deng  S B, Wei  H R, Wang  B, Huang J,  Yu G. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340
https://doi.org/10.1007/s11783-013-0510-7
12 Du T, Liu  L Y, Xiao  P, Che S,  Wang H M. Preparation of zeolite NaA for CO2 capture from nickel laterite residue. International Journal of Minerals Metallurgy and Materials, 2014, 21: 820–825
13 Torrisi A, Bell  R G, Mellot-Draznieks  C. Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design, 2010, 10(7): 2839–2841
https://doi.org/10.1021/cg100646e
14 Gonzalez-Zamora E, Ibrra  I A. CO2 capture under humid conditions in metal-organic frameworks. Materials Chemistry Frontiers, 2017, 1(8): 1471–1484
https://doi.org/10.1039/C6QM00301J
15 Razavi S S, Hashemianzadeh  S M, Karimi  H. Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N2 mixtures. Journal of Molecular Modeling, 2011, 17(5): 1163–1172
https://doi.org/10.1007/s00894-010-0810-9
16 Simmons J M, Wu  H, Zhou W,  Yildirim T. Carbon capture in metal-organic frameworks—a comparative study. Energy & Environmental Science, 2011, 4(6): 2177–2185
https://doi.org/10.1039/c0ee00700e
17 Xu X C, Song  C S, Andresen  J M, Miller  B G, Scaroni  A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002, 16(6): 1463–1469
https://doi.org/10.1021/ef020058u
18 Choi S, Drese  J H, Jones  C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9): 796–854
https://doi.org/10.1002/cssc.200900036
19 Darunte L A, Walton  K S, Sholl  D S, Jones  C W. CO2 capture via adsorption in amine-functionalized sorbents. Current Opinion in Chemical Engineering, 2016, 12: 82–90
https://doi.org/10.1016/j.coche.2016.03.002
20 Sayari A, Heydari-Gorji  A, Yang Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways. Journal of the American Chemical Society, 2012, 134(33): 13834–13842
https://doi.org/10.1021/ja304888a
21 Sayari A, Belmabkhout  Y. Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. Journal of the American Chemical Society, 2010, 132(18): 6312–6314
https://doi.org/10.1021/ja1013773
22 Wang K, Wang  X Y, Zhao  P F, Guo  X. High-temperature capture of CO2 on lithium-based sorbents prepared by a water-based sol-gel technique. Chemical Engineering & Technology, 2014, 37(9): 1552–1558
https://doi.org/10.1002/ceat.201300584
23 Chen H C, Zhang  P P, Duan  Y F, Zhao  C S. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process. Applied Energy, 2016, 162: 390–400
https://doi.org/10.1016/j.apenergy.2015.10.035
24 Wang S P, Fan  S S, Zhao  Y J, Fan  L J, Liu  S Y, Ma  X B. Carbonation condition and modeling studies of calcium-based sorbent in the fixed-bed reactor. Industrial & Engineering Chemistry Research, 2014, 53(25): 10457–10464
https://doi.org/10.1021/ie500789g
25 Zhao Y, Han  Y H, Ma  T Z, Guo  T X. Simultaneous desulfurization and denitrification from flue gas by ferrate(VI). Environmental Science & Technology, 2011, 45(9): 4060–4065
https://doi.org/10.1021/es103857g
26 Wang M, Lawal  A, Stephenson P,  Sidders J,  Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research & Design, 2011, 89(9): 1609–1624
https://doi.org/10.1016/j.cherd.2010.11.005
27 Liu M Y, Vogt  C, Chaffee A L,  Chang S L Y. Nanoscale structural investigation of Cs2CO3-doped MgO sorbent for CO2 capture at moderate temperature. Journal of Physical Chemistry C, 2013, 117(34): 17514–17520
https://doi.org/10.1021/jp4024316
28 Li Y Y, Han  K K, Lin  W G, Wan  M M, Wang  Y, Zhu J H. Fabrication of a new MgO/C sorbent for CO2 capture at elevated temperature. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(41): 12919–12925
https://doi.org/10.1039/c3ta12261a
29 Liu W J, Jiang  H, Tian K,  Ding Y W,  Yu H Q. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environmental Science & Technology, 2013, 47(16): 9397–9403
https://doi.org/10.1021/es401286p
30 Zukal A, Pastva  J, Cejka J. MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials, 2013, 167: 44–50
https://doi.org/10.1016/j.micromeso.2012.05.026
31 Li L, Wen  X, Fu X,  Wang F, Zhao  N, Xiao F K,  Wei W, Sun  Y H. MgO/Al2O3 sorbent for CO2 capture. Energy & Fuels, 2010, 24(10): 5773–5780
https://doi.org/10.1021/ef100817f
32 Bhagiyalakshmi M, Lee  J Y, Jang  H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control, 2010, 4(1): 51–56
https://doi.org/10.1016/j.ijggc.2009.08.001
33 Bian S W, Baltrusaitis  J, Galhotra P,  Grassian V H. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. Journal of Materials Chemistry, 2010, 20(39): 8705–8710
https://doi.org/10.1039/c0jm01261k
34 Jeon H, Min  Y J, Ahn  S H, Hong  S-M, Shin J-S,  Kim J H,  Lee K B. Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2012, 414: 75–81
35 She L, Li  J, Wan Y,  Yao X D,  Tu B, Zhao  D Y. Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. Journal of Materials Chemistry, 2011, 21(3): 795–800
https://doi.org/10.1039/C0JM02226H
36 Wang Q A, Luo  J Z, Zhong  Z Y, Borgna  A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55
https://doi.org/10.1039/C0EE00064G
37 Lee S C, Chae  H J, Lee  S J, Choi  B Y, Yi  C K, Lee  J B, Ryu  C K, Kim  J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environmental Science & Technology, 2008, 42(8): 2736–2741
https://doi.org/10.1021/es702693c
38 Xiao G K, Singh  R, Chaffee A,  Webley P. Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control, 2011, 5(4): 634–639
https://doi.org/10.1016/j.ijggc.2011.04.002
39 Zhang K L, Li  X H S, Duan  Y H, King  D L, Singh  P, Li L Y. Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal. International Journal of Greenhouse Gas Control, 2013, 12: 351–358
https://doi.org/10.1016/j.ijggc.2012.11.013
40 Lee S C, Choi  B Y, Lee  T J, Ryu  C K, Soo  Y S, Kim  J C. CO2 absorption and regeneration of alkali metal-based solid sorbents. Catalysis Today, 2006, 111(3-4): 385–390
https://doi.org/10.1016/j.cattod.2005.10.051
41 Kim K, Han  J W, Lee  K S, Lee  W B. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations. Physical Chemistry Chemical Physics, 2014, 16(45): 24818–24823
https://doi.org/10.1039/C4CP03809F
42 Watanabe S, Ma  X L, Song  C S. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. Journal of Physical Chemistry C, 2009, 113(32): 14249–14257
https://doi.org/10.1021/jp8110309
43 Han K K, Zhou  Y, Chun Y,  Zhu J H. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature. Journal of Hazardous Materials, 2012, 203: 341–347
https://doi.org/10.1016/j.jhazmat.2011.12.036
44 Yong Z, Mata  V, Rodriguez A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial & Engineering Chemistry Research, 2001, 40(1): 204–209
https://doi.org/10.1021/ie000238w
45 Wang Q, Tay  H H, Guo  Z, Chen L,  Liu Y, Chang  J, Zhong Z,  Luo J, Borgna  A. Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Applied Clay Science, 2012, 55: 18–26
https://doi.org/10.1016/j.clay.2011.07.024
46 Li B, Wen  X, Zhao N,  Wang X Z,  Wei W, Sun  Y H, Ren  Z H, Wang  Z J. Preparation of high stability MgO-ZrO2 solid base and its high temperature CO2 capture properties. Journal of Fuel Chemistry and Technology, 2010, 38: 473–477
47 Kruk M, Jaroniec  M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials, 2001, 13(10): 3169–3183
https://doi.org/10.1021/cm0101069
48 Klug H P, Alexander  L E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1954
49 Zukal A, Kubů  M, Pastva J.Two-dimensional zeolites: Adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide. Journal of CO2 Utilization, 2017, 21: 9–16
50 Pirngruber G D,  Raybaud P,  Belmabkhout Y,  Cejka J,  Zukal A. The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Physical Chemistry Chemical Physics, 2010, 12(41): 13534–13546
https://doi.org/10.1039/b927476f
51 Park D H, Lakhi  K S, Ramadass  K, Kim M K,  Talapaneni S N,  Joseph S,  Ravon U,  Al-Bahily K,  Vinu A. Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10753–10757
https://doi.org/10.1002/chem.201702566
[1] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[2] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[3] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[4] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[5] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[6] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[7] Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J]. Front. Chem. Sci. Eng., 2017, 11(4): 603-612.
[8] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[9] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[10] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[11] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[12] M. ABDELLAHI, M. ZAKERI, H. BAHMANPOUR. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling[J]. Front Chem Sci Eng, 2013, 7(2): 123-129.
[13] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[14] Shengchi ZHUO, Yongmin HUANG, Jun HU, Honglai LIU. Atomistic simulations for adsorption and separation of flue gas in MFI zeolite and MFI/MCM-41 micro/mesoporous composite[J]. Front Chem Sci Eng, 2011, 5(2): 264-273.
[15] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed