Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 70-76    https://doi.org/10.1007/s11705-017-1694-3
RESEARCH ARTICLE
Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation
Olga A. Ponomareva1,2, Polina A. Shaposhnik1, Marina V. Belova1, Boris A. Kolozhvari1,2, Irina I. Ivanova1,2()
1. Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
2. A.V. Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cs-containing FAU(Y)-type zeolite catalysts were prepared by conventional and novel ion exchange procedures followed by incipient wetness impregnation with CsOH. The novel ion exchange procedure involved hydrothermal treatment of NaY zeolite in aqueous solution of CsCl at 140–200 °C for 6–24 h. The samples were characterized by low-temperature nitrogen adsorption, X-ray fluorescence analysis, X-ray powder diffraction, scanning electron microscopy, 23Na, 27Al and 133Cs magic angle spinning nuclear magnetic resonance, CO2 and NH3-Temperature programmed desorption. The results show that hydrothermal treatment at 200 °C allows to obtain higher degrees of ion-exchange (up to 83%) with respect to conventional method giving maximum 66%–69%. Catalytic properties of Cs-containing FAU(Y) were studied in aniline methylation. The yield of N-methylaniline is shown to correlate with catalyst’s basicity. The best catalyst performance was achieved over the catalyst with the highest ion-exchange degree impregnated with CsOH. The selectivity to N-methylaniline over this catalyst reached 96.4%.

Keywords FAU(Y) zeolite      ion exchange with cesium      aniline alkylation      N-methylaniline     
Corresponding Author(s): Irina I. Ivanova   
Just Accepted Date: 30 October 2017   Online First Date: 09 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Olga A. Ponomareva,Polina A. Shaposhnik,Marina V. Belova, et al. Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 70-76.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1694-3
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/70
Sample Si/Al Na/Al Cs2O content /wt-% Ion exchange level /% Pore volume /(cm3?g−1)
NaY 2.4 0.97 0 0 0.289
NaY/CsOH 2.4 0.97 7.2 0 0.233
CsNaY/1 2.4 0.74 8.6 21 0.259
CsNaY/2 2.4 0.81 17.4 32 0.235
CsNaY/3 2.4 0.39 22.8 60 0.220
CsNaY/4 2.4 0.33 24.8 66 0.207
CsNaY/5 2.4 0.30 25.2 69 0.203
CsNaY/5/140/24 2.4 0.20 24.9 73 0.209
CsNaY/5/200/6 2.4 0.24 25.2 75 0.199
CsNaY/0/200/24 2.5 0.22 27.4 73 0.164
CsNaY/5/200/24 2.4 0.16 36.1 83 0.150
CsNaY/5/200/24/ CsOH 2.4 0.16 43.3 83 0.110
Tab.1  Catalyst characteristics
Fig.1  X-ray diffraction data for (A) NaY, (B) NaY/CsOH, (C) CsNaY/1, (D) CsNaY/2, (E) CsNaY/3, (F) CsNaY/4, (G)?CsNaY/5, (H) CsNaY/5/140/24, (I) CsNaY/5/200/24 and (J) CsNaY/5/200/24/CsOH samples
Fig.2  SEM microphotograps of (A) NaY, (B) CsNaY/5, (C) CsNaY/5/200/24 and (D)?CsNaY/5/200/24/CsOH samples
Fig.3  27Al MAS NMR spectra for (A) NaY, (B) NaY/CsOH, (C) CsNaY/1, (D) CsNaY/2, (E)?CsNaY/3, (F)?CsNaY/4, (G) CsNaY/5, (H) CsNaY/5/200/6, (I) CsNaY/5/140/24, (J)?CsNaY/0/200/24, (K) CsNaY/5/200/24 and (L) CsNaY/5/200/24/CsOH samples
Fig.4  23Na MAS NMR spectra for (A) NaY, (B) CsNaY/1, (C) CsNaY/2, (D) CsNaY/3, (E)?CsNaY/4, (F) CsNaY/5 and (G) CsNaY/5/200/24 samples
Fig.5  133Cs MAS NMR spectra for (A) CsNaY/1, (B) CsNaY/2, (C) CsNaY/3, (D) CsNaY/4, (E)?CsNaY/5 and (F) CsNaY/5/200/24 samples
Fig.6  TPD NH3 profiles of (A) NaY, (B) CsNaY/5 and (C) CsNaY/5/200/24/CsOH samples
Fig.7  TPD CO2 profiles of (A) CsNaY/5/200/24/CsOH and (B) CsNaY/5 samples
Catalyst NaY NaY/CsOH CsNaY/5 CsNaY/5/200/24 CsNaY/5/200/24/CsOH
Aniline conversion/% 38.6 31.9 34.3 28.7 34.9
Selectivity/wt-%
NMA 8.1 34.4 19.6 34.3 96.4
NNDMA 0.3 2.5 2.1 7.6 0.2
p-MA 64.2 47.6 52.7 35.2 2.2
o-MA 0.9 0.0 0.0 0.9 0.0
2,4-DMA 14.2 3.7 12.3 13.6 1.0
p- MNMA 2.0 10.2 1.2 0.2 0.0
p-MNNDMA 6.5 0.9 7.6 5.5 0.0
TMA 3.8 0.7 4.5 2.7 0.2
Tab.2  Aniline alkylation with methanol over Cs-containing catalystsa)
Fig.8  N-methylaniline and N,N-dimethylaniline yield as function of Sanderson’s electronegativity
1 Jacobs P A, Uytterhoeven  J B. Active sites in zeolites: Part 7. Isopropanol dehydrogenation over alkali cation-exchanged X and Y zeolites. Journal of Catalysis, 1977, 50(1): 109–114
https://doi.org/10.1016/0021-9517(77)90013-6
2 Hathaway P E, Davis  M E. Base catalysis by alkali-modified zeolites: I. Catalytic activity. Journal of Catalysis, 1989, 116(1): 263–278
https://doi.org/10.1016/0021-9517(89)90091-2
3 Hathaway P E, Davis  M E. Base catalysis by alkali-modified zeolites: II. Nature of the active site. Journal of Catalysis, 1989, 116(1): 279–284
https://doi.org/10.1016/0021-9517(89)90092-4
4 Cocepcion-Heydorn P,  Jia C, Herein  D, Pfander N,  Karge H G,  Jentoft F C. Structural and catalytic properties of sodium and cesium exchanged X and Y zeolites, and germanium-substituted X zeolite. Journal of Molecular Catalysis A Chemical, 2000, 162(1-2): 227–246
https://doi.org/10.1016/S1381-1169(00)00292-2
5 Bordawekar S V,  Davis R J. Probing the basic character of alkali-modified zeolites by CO2 adsorption microcalorimetry, butene isomerization, and toluene alkylation with ethylene. Journal of Catalysis, 2000, 189(1): 79–90
https://doi.org/10.1006/jcat.1999.2703
6 Kim J C, Li  H X, Chen  C Y, Davis  M E. Base catalysis by intrazeolitic cesium oxides. Microporous Materials, 1994, 2(5): 413–423
https://doi.org/10.1016/0927-6513(94)00008-5
7 Wieland W S, Davis  R J, Garses  J M. Side-chain alkylation of toluene with methanol over alkali-exchanged zeolites X, Y, L, and β. Journal of Catalysis, 1998, 173(2): 490–500
https://doi.org/10.1006/jcat.1997.1952
8 Borgna A, Sepulveda  J, Magni S I,  Apesteguia C R. Active sites in the alkylation of toluene with methanol: A study by selective acid–base poisoning. Applied Catalysis A, General, 2004, 276(1-2): 207–215
https://doi.org/10.1016/j.apcata.2004.08.007
9 Palomares A E,  Eder-mirth G,  Rep M, Lercher  J A. Alkylation of toluene over basic catalysts—key requirements for side chain alkylation. Journal of Catalysis, 1998, 180(1): 56–65
https://doi.org/10.1006/jcat.1998.2253
10 Sooknoi T, Dwyer  J. Role of substrate’s electrophilicity in base catalysis by zeolites: Alkylation of acetonitrile with methanol. Journal of Molecular Catalysis A Chemical, 2004, 211(1-2): 155–164
https://doi.org/10.1016/j.molcata.2003.10.017
11 Su B L, Barthomeuf  D. Alkylation of aniline with methanol: Change in selectivity with acido-basicity of faujasite catalysts. Applied Catalysis A, General, 1995, 124(1): 73–80
https://doi.org/10.1016/0926-860X(94)00247-9
12 Ivanova I I, Pomakhina  E B, Rebrov  A I, Wang  W, Hunger M,  Weitkamp J. Mechanism of aniline methylation on zeolite catalysts investigated by in situ 13C NMR spectroscopy. Kinetics and Catalysis, 2003, 44(5): 701–709
https://doi.org/10.1023/A:1026158525990
13 Danuthai T, Sooknoi  T, Jongpatiwut S,  Rirksomboon T,  Osuwan S,  Resasco D E. Effect of extra-framework cesium on the deoxygenation of methylester over CsNaX zeolites. Applied Catalysis A, General, 2004, 409-410: 74–81
https://doi.org/10.1016/j.apcata.2011.09.029
14 Tsou J, Magnoux  P, Guisnet P,  Orfao J J M,  Figueiredo J L. Catalytic oxidation of methyl-isobutyl-ketone over basic zeolites. Applied Catalysis B: Environmental, 2004, 51(2): 129–133
https://doi.org/10.1016/j.apcatb.2004.02.010
15 Sherry H S. The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite. Journal of Physical Chemistry, 1966, 70(4): 1158–1168
https://doi.org/10.1021/j100876a031
16 Norby P, Poshni  F I, Gualtiery  A F, Hanson  J C, Grey  C P. Cation migration in zeolites: An in situ  powder diffraction and MAS NMR study of the structure of zeolite Cs(Na)-Y during dehydration. Journal of Physical Chemistry B, 1998, 102(5): 839–856
https://doi.org/10.1021/jp9730398
17 Koller H, Burger  B, Schneider A M,  Engelhardt G,  Weitkamp J. Location of Na+ and Cs+ cations in CsNaY zeolites studied by 23Na and 133Cs magic-angle spinning nuclear magnetic resonance spectroscopy combined with X-ray structure analysis by Rietveld refinement. Microporous Materials, 1995, 5(4): 219–232
https://doi.org/10.1016/0927-6513(95)00061-5
18 Wei R, Guo  M, Wang J. Preparation, characterization and catalytic behavior of 12-molybdophosphoric acid encapsulated in the supercage of Cs+-exchanged Y zeolite. Chinese Journal of Chemical Engineering, 2009, 17(1): 58–63
https://doi.org/10.1016/S1004-9541(09)60033-1
19 Hunger M, Engelhardt  G, Koller H,  Weitkamp J. Characterization of sodium cations in dehydrated faujasites and zeolite EMT by 23Na DOR, 2D nutation, and MAS NMR. Solid State Nuclear Magnetic Resonance, 1993, 2(3): 111–120
https://doi.org/10.1016/0926-2040(93)90029-M
20 Hunger M, Schenk  U, Buchholz A. Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy. Journal of Physical Chemistry B, 2000, 104(51): 12230–12236
https://doi.org/10.1021/jp001571g
21 Jelinek R, Malek  A, Ozin G A. 23Na synchronized double-rotation NMR study of Cs+, Ca2+, and La3+ cation-exchanged sodium zeolite Y. Journal of Physical Chemistry B, 1995, 99(22): 9236–9240
https://doi.org/10.1021/j100022a042
22 Mortier W J. Zeolite electronegativity related to physicochemical properties. Journal of Catalysis, 1978, 55(2): 138–145
https://doi.org/10.1016/0021-9517(78)90200-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed