Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 315-325    https://doi.org/10.1007/s11705-017-1698-z
VIEWS & COMMENTS
Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion
Giorgia De Guido1(), Matteo Compagnoni2, Laura A. Pellegrini1, Ilenia Rossetti2
1. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan,Italy
2. Department of Chemistry, Università degli Studi di Milano, INSTM Unit Milano-Università and CNR-ISTM, Via Camillo Golgi 19, 20133 Milan, Italy
 Download: PDF(212 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global warming as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced from the use of fossil fuels in electricity generation and industrial processes. In this respect, post-combustion systems have received great attention as a possible near-term CO2 capture technology that can be retrofitted to existing power plants. This capture technology is, however, energy-intensive and results in large equipment sizes because of the large volumes of the flue gas to be treated. To cope with the demerits of other CCS technologies, the chemical looping combustion (CLC) process has been recently considered as a solution for CO2 separation. It is typically referred to as a technology without energy penalty. Indeed, in CLC the fuel and the combustion air are never mixed and the gases from the oxidation of the fuel (i.e., CO2 and H2O) leave the system as a separate stream and can be separated by condensation of H2O without any loss of energy. The key issue for the CLC process is to find a suitable oxygen carrier, which provides the fuel with the activated oxygen needed for combustion. The aim of this work is to explore the feasibility of using perovskites as oxygen carriers in CLC and to consider the possible advantages with respect to the scrubbing process with amines, a mature post-combustion technology for CO2 separation.

Keywords CO2 capture      monoethanolamine      chemical looping combustion      oxygen carrier      perovskites     
Corresponding Author(s): Giorgia De Guido   
Just Accepted Date: 30 November 2017   Online First Date: 18 January 2018    Issue Date: 09 May 2018
 Cite this article:   
Giorgia De Guido,Matteo Compagnoni,Laura A. Pellegrini, et al. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1698-z
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/315
Technology Advantages Disadvantages
Absorption Well established process
High operational confidence
Energy penalty for solvent regenerationa)
Equipment corrosion in presence of O2
Pre-absorption treatment required to remove solvent-detrimental components (e.g., SOx and NOx)
Possible environmental impact and safety problems due to solvent degradationb)
Adsorption Lower regeneration energy relative to solvent-based processes Particle attrition
Large volumes of solid sorbents
Thermal management of large scale adsorber vessels
Currently not suitable for processing very high gas flows containing many impurities
Membranes Low energy requirements relative to solvent-based processes
Small foot-print
Possible modular designc)
Strongly affected by flue gas conditions (e.g., low CO2 concentration and pressure)
Potential fouling of membrane surfaces
Uncertainty about the possibility of integration into a power plant
Not a mature technology
Cryogenics Mature technology already adopted for CO2 recovery
Viable for very high CO2 concentrations
Low operating temperatures
Hydrate-based Small energy penaltyd) At the R&D stage
Tab.1  Comparison among existing CO2 separation technologies
Test run [24] LL /(molCO2·molMEA1) Mole inlet CO2 /mol-% Gas rate /(m3·min1) Liquid rate
/(L·min1)
CO2 removal
/%
Actual reboiler duty /(MJ·h1)
29 0.28 16.6 11.00 54.9 70 918
30 0.28 16.6 11.00 54.9 70 918
43 0.23 17.0 11.00 39.4 72 756
44 0.23 17.0 11.00 39.4 72 754
47 0.28 18.0 8.23 30.1 69 738
48 0.28 18.0 8.23 30.1 69 775
Tab.2  Operating conditions and energy contributions for the experimental tests performed by Dugas [24] that have been chosen in this work for model validation (packing for the absorber: IMTP #40)
Test run [24] Exp. Aspen Plus® default [20] Proposed model [25]
y CO2,out y CO2,out Abs. err. /% y CO2,out Abs. err. /%
29 0.0532 0.04619 13.18 0.05156 3.08
30 0.0591 0.05022 15.03 0.05558 5.96
43 0.0558 0.04698 15.81 0.05238 6.13
44 0.0540 0.04655 13.80 0.05203 3.65
47 0.0638 0.06682 4.73 0.06753 5.85
48 0.0619 0.06339 2.41 0.06374 2.97
AAD% 10.82 AAD% 4.61
Tab.3  CO2 mole fraction in the purified gas stream leaving the absorber in the test runs [24] considered in this work
Fig.1  Parity plot for the concentration (mole fraction) of CO2 in the purified gas stream leaving the absorber for the test runs reported in Table 3
Fig.2  Schematic representation of the CLC technology (MexOy denotes the generic metal oxide acting as oxygen carrier, MexOyδ the reduced material sent to the regeneration step)
Fig.3  Examples of (a) TPD analysis of sample La0.9Ce0.1MnO3 (blu, solid line) and LaMnO3 (red, dotted line); (b) TPR pattern relative to sample LaCoO3
Sample Titrated oxygen /(mol·kgcat1) Oxygen ratio, RO
LaCoO3 6.88 0.110
La0.9Sr0.1 CoO3 6.10 0.098
La0.9Ce0.1 CoO3 6.45 0.103
0.5wt-% Pt- LaCoO3 5.60 0.090
0.5wt-% Pd- LaCoO3 6.67 0.107
LaMnO3 6.21 0.099
La0.9Sr0.1 MnO3 7.55 0.121
La0.9Ce0.1 MnO3 6.82 0.109
0.5wt-% Pt- LaMnO3 3.65 0.058
0.5wt-% Pd- LaMnO3 4.91 0.079
Fe2O3a) 9.37b) 0.30
NiOa) 6.56b) 0.21
Tab.4  Quantitative titration of oxygen (as mol/kgcat) by TPR analysis (experimental data from ref. [51])
1 United Nations Framework Convention on Climate Change.FOCUS: Mitigation-Action on mitigation: Reducing emissions and enhancing sinks. Bonn: UNFCCC, 2014
2 Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation: Application of chemical-looping combustion. Chemical Engineering Science, 2001, 56(10): 3101–3113
https://doi.org/10.1016/S0009-2509(01)00007-0
3 Giuffrida A, Moioli S, Romano M C, Lozza G. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture. International Journal of Energy Research, 2016, 40(6): 831–845
https://doi.org/10.1002/er.3488
4 Brandvoll Ø. Chemical looping combustion: Fuel conversion with inherent CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2005
5 Global Carbon Capture and Storage Institute. CO2 capture technologies: Post-combustion capture (PCC). 2012
6 Leung D Y, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 2014, 39: 426–443
https://doi.org/10.1016/j.rser.2014.07.093
7 Elwell L C, Grant W S. Technology options for capturing CO2. Power, 2006, 150(8): 60–65
8 Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: Materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11–18
https://doi.org/10.1016/S1750-5836(07)00031-X
9 Wolf J, Anheden M, Yan J. Comparison of nickel-and iron-based oxygen carriers in chemical looping combustion for CO2 capture in power generation. Fuel, 2005, 84(7): 993–1006
https://doi.org/10.1016/j.fuel.2004.12.016
10 Hoffmann S, Bartlett M, Finkenrath M, Evulet A, Ursin T P. Performance and cost analysis of advanced gas turbine cycles with precombustion CO2 capture. Journal of Engineering for Gas Turbines and Power, 2009, 131(2): 021701
https://doi.org/10.1115/1.2982147
11 Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J M, Bouallou C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 2010, 30(1): 53–62
https://doi.org/10.1016/j.applthermaleng.2009.05.005
12 Hossain M M, de Lasa H I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 2008, 63(18): 4433–4451
https://doi.org/10.1016/j.ces.2008.05.028
13 Cansolv Technologies Inc. Sask Power Boundary Dam 3-Project Update & Some Lessons Learned. 2013
14 Ondrey G. CO2 gets grounded. Chemical Engineering (Albany, N.Y.), 2011, 107(3): 41–45
15 Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27
https://doi.org/10.1016/S1001-0742(08)60002-9
16 Chakma A. CO2 capture processes—opportunities for improved energy efficiencies. Energy Conversion and Management, 1997, 38: S51–S56
https://doi.org/10.1016/S0196-8904(96)00245-2
17 Veawab A, Aroonwilas A, Tontiwachwuthikul P. CO2 absorption performance of aqueous alkanolamines in packed columns. Fuel Chemistry Division Preprints, 2002, 47(1): 49–50
18 Pellegrini L A, Moioli S, Gamba S. Energy saving in a CO2 capture plant by MEA scrubbing. Chemical Engineering Research & Design, 2011, 89(9): 1676–1683
https://doi.org/10.1016/j.cherd.2010.09.024
19 Aspen Hysys®. Bedford, MA: Aspen Technology, Inc., 2012
20 Aspen Plus®. Bedford, MA: Aspen Technology, Inc., 2012
21 Lewis W, Whitman W. Principles of gas absorption. Industrial & Engineering Chemistry, 1924, 16(12): 1215–1220
https://doi.org/10.1021/ie50180a002
22 King C J. Turbulent liquid phase mass transfer at free gas-liquid interface. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 1–8
https://doi.org/10.1021/i160017a001
23 Moioli S, Pellegrini L, Gamba S. Simulation of CO2 capture by MEA scrubbing with a rate-based model. Procedia Engineering, 2012, 42: 1651–1661
https://doi.org/10.1016/j.proeng.2012.07.558
24 Dugas R E. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. Dissertation for the Doctoral Degree. Austin: University of Texas, 2006
25 Moioli S, Pellegrini L A, Gamba S, Li B. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution. Frontiers of Chemical Science and Engineering, 2014, 8(1): 123–131
https://doi.org/10.1007/s11705-014-1415-0
26 Nandy A, Loha C, Gu S, Sarkar P, Karmakar M K, Chatterjee P K. Present status and overview of chemical looping combustion technology. Renewable & Sustainable Energy Reviews, 2016, 59: 597–619
https://doi.org/10.1016/j.rser.2016.01.003
27 Gilliland R E, Lewis W K. Production of pure carbon dioxide. US Patent, 2665972 A, 1954-01-12
28 Ritcher H J, Knoche K F. Reversibility of combustion process. Efficiency and costing, second law analysis of process. ACS Symposium Series, 1983, 235: 71–85
29 Ishida M, Zheng D, Akehata T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy, 1987, 12(2): 147–154
https://doi.org/10.1016/0360-5442(87)90119-8
30 Ishida M, Jin H. A novel combustor based on chemical-looping reactions and its reaction kinetics. Journal of Chemical Engineering of Japan, 1994, 27(3): 296–301
https://doi.org/10.1252/jcej.27.296
31 Johansson E, Mattisson T, Lyngfelt A, Thunman H A. 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel, 2006, 85(10): 1428–1438
https://doi.org/10.1016/j.fuel.2006.01.010
32 Johansson E, Mattisson T, Lyngfelt A, Thunman H. Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Chemical Engineering Research & Design, 2006, 84(9): 819–827
https://doi.org/10.1205/cherd05024
33 Abad A, Mattisson T, Lyngfelt A, Rydén M. Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 2006, 85(9): 1174–1185
https://doi.org/10.1016/j.fuel.2005.11.014
34 Mattisson T, Lyngfelt A, Cho P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 2001, 80(13): 1953–1962
https://doi.org/10.1016/S0016-2361(01)00051-5
35 Koga Y, Harrison L. Comprehensive Chemical Kinetics. Bamford C H, Tipper C F H, Compton R G, eds. Amsterdam: Elsevier, 1984
36 Richardson J, Turk B, Twigg M. Reduction of model steam reforming catalysts: Effect of oxide additives. Applied Catalysis A, General, 1996, 148(1): 97–112
https://doi.org/10.1016/S0926-860X(96)00225-6
37 Richardson J, Scates R, Twigg M. X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Applied Catalysis A, General, 2004, 267(1): 35–46
https://doi.org/10.1016/j.apcata.2004.02.022
38 Utigard T, Wu M, Plascencia G, Marin T. Reduction kinetics of Goro nickel oxide using hydrogen. Chemical Engineering Science, 2005, 60(7): 2061–2068
https://doi.org/10.1016/j.ces.2004.11.024
39 Sohn H, Szekely J. A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chemical Engineering Science, 1972, 27(4): 763–778
https://doi.org/10.1016/0009-2509(72)85011-5
40 Szekely J, Lin C, Sohn H. A structural model for gas-solid reactions with a moving boundary—V: An experimental study of the reduction of porous nickel-oxide pellets with hydrogen. Chemical Engineering Science, 1973, 28(11): 1975–1989
https://doi.org/10.1016/0009-2509(73)85042-0
41 Adanez J, Abad A, Garcia-Labiano F, Gayan P, Luis F. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 2012, 38(2): 215–282
https://doi.org/10.1016/j.pecs.2011.09.001
42 Hossain M M. Fluidized bed chemical-looping combustion: Development of a bimetallic oxygen carrier and kinetic modeling. 2007
43 Hossain M M, de Lasa H I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC. AIChE Journal, 2007, 53(7): 1817–1829
https://doi.org/10.1002/aic.11188
44 Readman J E, Olafsen A, Larring Y, La Blom R. La0.8Sr0.2Co0.2Fe0.8O3−δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. Journal of Materials Chemistry, 2005, 15(19): 1931–1937
https://doi.org/10.1039/b416526h
45 Galinsky N, Sendi M, Bowers L, Li F. CaMn1−xBxO3−δ (B= Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy, 2016, 174: 80–87
https://doi.org/10.1016/j.apenergy.2016.04.046
46 Taylor D D, Schreiber N J, Levitas B D, Xu W, Whitfield P S, Rodriguez E E. Oxygen storage properties of La1−xSrxFeO3−δ for chemical-looping reactions–an in-situ neutron and synchrotron X-ray study. Chemistry of Materials, 2016, 28(11): 3951–3960
https://doi.org/10.1021/acs.chemmater.6b01274
47 Abad A, García-Labiano F, Gayán P, de Diego L, Adánez J. Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9−δ for chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU). Chemical Engineering Journal, 2015, 269: 67–81
https://doi.org/10.1016/j.cej.2015.01.033
48 Naqvi R. Analysis of natural gas-fired power cycles with chemical looping combustion for CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2006
49 Linderholm C. CO2 Capture using chemical-looping combustion—operational experience with gaseous and solid fuels. Dissertation for the Doctoral Degree. Gothenburg, Sweden: Chalmers University of Technology, 2011
50 Rossetti I, Forni L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis. Applied Catalysis B: Environmental, 2001, 33(4): 345–352
https://doi.org/10.1016/S0926-3373(01)00194-1
51 Rossetti I, Biffi C, Forni L. Oxygen non-stoichiometry in perovskitic catalysts: Impact on activity for the flameless combustion of methane. Chemical Engineering Journal, 2010, 162(2): 768–775
https://doi.org/10.1016/j.cej.2010.06.003
52 Rossetti I, Allieta M, Biffi C, Scavini M. Oxygen transport in nanostructured lanthanum manganites. Physical Chemistry Chemical Physics, 2013, 15(39): 16779–16787
https://doi.org/10.1039/c3cp52928b
53 King D A. Thermal desorption from metal surfaces: A review. Surface Science, 1975, 47(1): 384–402
https://doi.org/10.1016/0039-6028(75)90302-7
54 de Jong A M, Niemantsverdriet J W. Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surface Science, 1990, 233(3): 355–365
https://doi.org/10.1016/0039-6028(90)90649-S
55 Redhead P A. Thermal desorption of gases. Vacuum, 1962, 12(4): 203–211
https://doi.org/10.1016/0042-207X(62)90978-8
[1] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[2] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[3] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[4] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[5] Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front Chem Sci Eng, 2014, 8(1): 123-131.
[6] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[7] Elena Yu. KONYSHEVA. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity[J]. Front Chem Sci Eng, 2013, 7(3): 249-261.
[8] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[9] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[10] ZENG Lingke, LIU Yanchun, LIU Ping′an, WANG Hui, SHUI Anze, DUAN Bilin. Preparation and catalytic performance of La0.8Sr0.2CoO3 supported on the mullite fiber ceramic[J]. Front. Chem. Sci. Eng., 2007, 1(4): 372-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed