Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 358-366    https://doi.org/10.1007/s11705-018-1702-2
RESEARCH ARTICLE
Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels
Xiu-Tian-Feng E1,2, Lei Zhang1,2, Fang Wang1,2, Xiangwen Zhang1,2, Ji-Jun Zou1,2()
1. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative and Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.

Keywords aluminum nanoparticles      combustion      ignition      shock tube test      high energy density fuel     
Corresponding Author(s): Ji-Jun Zou   
Online First Date: 07 February 2018    Issue Date: 18 September 2018
 Cite this article:   
Xiu-Tian-Feng E,Lei Zhang,Fang Wang, et al. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1702-2
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/358
Fig.1  Illustration of shock tube facility
Fig.2  XRD patterns of synthesized Al NPs with different ligands
Fig.3  TEM images of synthesized Al NPs with different ligands: (a) oleyl amine, (b) TOPO, and (c) oleic acid
Fig.4  TG patterns of synthesized Al NPs with different ligands
Fig.5  (a) IR spectra and (b, c, d) XPS binding energy of Al NPs synthesized with oleic acid
Fig.6  TEM images of Al NPs synthesized at (a) 50 °C and (b) 120 °C with oleic acid
Fig.7  TEM images of synthesized Al NPs using different concentrations of oleic acid: (a) 0.005 mol·L1, (b) 0.01 mol·L1, (c) 0.02 mol·L1, (d) 0.03 mol·L1 and (e,f) 0.04 mol·L1
Fig.8  Average diameter of Al NPs synthesized with different concentrations of oleic acid
Fig.9  Particle distribution of Al NPs in JP-10: (a) freshly prepared, (b) after standing for six months, and (c) mass concentration change during a long-term storage
Fig.10  Ignition delay of pure JP-10 and Al NPs/JP-10
Fig.11  Combustion images of JP-10 and Al NPs/JP-10: (a, c) JP-10 at 1500 and 1750 K, and (b, d) Al NPs/JP-10 at 1500 and 1750 K
1 Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Recent developments in high-energy density liquid hydrocarbon fuels. Energy & Fuels, 1999, 13(3): 641–649
https://doi.org/10.1021/ef980195k
2 Keshavarz M H, Monjezi K H, Esmailpour K, Zamani M. Performance assessment of some isomers of saturated polycyclic hydrocarbons for use as jet fuel. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 309–314
https://doi.org/10.1002/prep.201400079
3 Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Single-step catalytic liquid-phase hydroconversion of DCPD into high energy density fuel exo-THDCPD. Green Chemistry, 2012, 14(4): 976–983
https://doi.org/10.1039/c2gc16264d
4 Wang L, Zou J-J, Zhang X, Wang L. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for jet propellant-10 and adamantine. Fuel, 2012, 91(1): 164–169
https://doi.org/10.1016/j.fuel.2011.07.038
5 Huang M Y, Wu J C, Shieu F S, Lin J J. Isomerization of endotetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts. Journal of Molecular Catalysis A Chemical, 2010, 315(1): 69–75
https://doi.org/10.1016/j.molcata.2009.09.002
6 Zou J-J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Kinetics of tricyclopentadiene hydrogenation over Pd-B/γ-Al2O3 amorphous catalyst. Industrial & Engineering Chemistry Research, 2007, 46(13): 4415–4420
https://doi.org/10.1021/ie0700359
7 Wang L, Zou J-J, Zhang X, Wang L. Rearrangement of tetrahydrotricyclopentadiene using acidic ionic liquid: Synthesis of diamondoid fuel. Energy & Fuels, 2011, 25(4): 1342–1347
https://doi.org/10.1021/ef101702r
8 Zou J-J, Zhang X, Kong J, Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4. Fuel, 2008, 87(17): 3655–3659
https://doi.org/10.1016/j.fuel.2008.07.006
9 Zou J-J, Xiong Z, Wang L, Zhang X, Mi Z. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. Journal of Molecular Catalysis A Chemical, 2007, 271(1-2): 209–215
https://doi.org/10.1016/j.molcata.2007.03.005
10 E X-T-F, Zhang Y, Zou J-J, Wang L, Zhang X. Oleylamine-protected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312–12318
https://doi.org/10.1021/ie502311x
11 E X-T-F, Zhang Y, Zou J-J, Zhang X, Wang L. Shape evolution in Brust-Schiffrin synthesis of Au nanoparticles. Materials Letters, 2014, 118(3): 196–199
12 Van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy & Fuels, 2006, 20(5): 1886–1894
https://doi.org/10.1021/ef060064g
13 Shimizu T, Abid A D, Poskrebyshev G, Wang H, Nabity J, Engel J, Yu J, Wickham D, Van Devener B, Anderson S L, Williams S. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combustion and Flame, 2010, 157(3): 421–435
https://doi.org/10.1016/j.combustflame.2009.07.012
14 Van Devener B, Anderson S L, Shimizu T, Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S. In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition. Journal of Physical Chemistry C, 2015, 80033(80138): 20632–20639
15 Guo Y, Yang Y, Fang W, Hu S. Resorcinarene-encapsulated Ni-B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10. Applied Catalysis A, General, 2014, 469(3): 213–220
https://doi.org/10.1016/j.apcata.2013.09.050
16 E X-T-F, Pan L, Wang F, Wang L, Zhang X, Zou J-J. Al-nanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745
https://doi.org/10.1021/acs.iecr.6b00043
17 Allen C, Mittal G, Sung C J, Toulson E, Lee T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33(2): 3367–3374
https://doi.org/10.1016/j.proci.2010.06.007
18 Starik A M, Kuleshov P S, Sharipov A S, Titova N S. Kinetics of ignition and combustion in the Al-CH4-O2 System. Energy & Fuels, 2014, 28(10): 6579–6588
https://doi.org/10.1021/ef5015567
19 Smirnov V V, Kostritsa S A, Kobtsev V D, Titova N S, Starik A M. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combustion and Flame, 2015, 162(10): 3554–3561
https://doi.org/10.1016/j.combustflame.2015.06.011
20 Haber J A, Buhro W E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. Journal of the American Chemical Society, 1998, 120(42): 10847–10855
https://doi.org/10.1021/ja981972y
21 Jouet R J, Warren A D, Rosenberg D M, Bellitto V J, Park K, Zachariah M R. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chemistry of Materials, 2005, 800(17): 2987–2996
https://doi.org/10.1021/cm048264y
22 Jouet R J, Carney J R, Granholm R H, Sandusky H W, Warren A D. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Materials Science and Technology, 2006, 22(4): 422–429
https://doi.org/10.1179/174328406X84003
23 Foley T J, Johnson C E, Higa K T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chemistry of Materials, 2005, 17(16): 4086–4091
https://doi.org/10.1021/cm047931k
24 Fernando K A S, Smith M J, Harruff B A, Lewis W K, Guliants E A, Bunker C E. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. Journal of Physical Chemistry C, 2009, 113(2): 500–503
https://doi.org/10.1021/jp809295e
25 Xu S, Liao Q. Shock tube study on auto-ignition delay of kerosene aerosol and its cracked mixture. Procedia Engineering, 2015, 99(1): 338–343
https://doi.org/10.1016/j.proeng.2014.12.544
26 Goulet P J G, Lennox R B. New insights into Brust-Schiffrin metal nanoparticle synthesis. Journal of the American Chemical Society, 2010, 132(28): 9582–9584
https://doi.org/10.1021/ja104011b
27 Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
https://doi.org/10.1002/anie.200802248
28 Lewis W K, Rosenberger A T, Gord J R, Crouse C A, Harruff B A, Shiral Fernando K A, Smith M J, Phelps D K, Spowart J E, Guliants E A, et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. Journal of Physical Chemistry C, 2010, 114(14): 6377–6380
https://doi.org/10.1021/jp100274j
29 Bournel F, Laffon C, Parent P, Tourillon G. Adsorption of acrylic acid on aluminium at 300 K: A multi-spectroscopic study. Surface Science, 1996, 352-354(95): 228–231
https://doi.org/10.1016/0039-6028(95)01138-2
30 Lee H M, Kim Y J. Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3352–3358
https://doi.org/10.1016/j.solmat.2011.07.027
31 Hammerstroem D W, Burgers M A, Chung S W, Guliants E A, Bunker C E, Wentz K M, Hayes S E, Buckner S W, Jelliss P A. Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: Ratio-dependent stability and particle size. Inorganic Chemistry, 2011, 50(11): 5054–5059
https://doi.org/10.1021/ic2003386
32 Gan Y, Qiao L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combustion and Flame, 2011, 158(2): 354–368
https://doi.org/10.1016/j.combustflame.2010.09.005
33 Zhao Y, Yi H, Jia F, Li H, Peng C, Song S. A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water. Powder Technology, 2017, 306(7): 74–79
https://doi.org/10.1016/j.powtec.2016.10.045
34 Davidson D F, Horning D C, Herbon J T, Hanson R K. Shock tube measurements of JP-10 ignition. Proceedings of the Combustion Institute, 2000, 28(2): 1687–1692
https://doi.org/10.1016/S0082-0784(00)80568-8
35 Li Y, Kalia R K, Nakano A, Vashishta P. Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 2013, 114(13): 134312–134322
https://doi.org/10.1063/1.4823984
36 Levitas V I. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combustion and Flame, 2009, 156(2): 543–546
https://doi.org/10.1016/j.combustflame.2008.11.006
[1] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[2] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
[3] Vojtěch Turek, Bohuslav Kilkovský, Zdeněk Jegla, Petr Stehlík. Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Front. Chem. Sci. Eng., 2018, 12(4): 660-669.
[4] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[5] Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading[J]. Front. Chem. Sci. Eng., 2017, 11(2): 185-196.
[6] Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki. Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring[J]. Front. Chem. Sci. Eng., 2016, 10(4): 459-471.
[7] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[8] Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate[J]. Front Chem Sci Eng, 2014, 8(1): 87-94.
[9] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
[10] Xianyun LIU, Jianzhou LIU, Feifei GENG, Zhanku LI, Ping LI, Wanli GONG. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion[J]. Front Chem Sci Eng, 2012, 6(1): 34-37.
[11] Ganesh TILEKAR, Kiran SHINDE, Kishor KALE, Reshma RASKAR, Abaji GAIKWAD. The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate[J]. Front Chem Sci Eng, 2011, 5(4): 477-491.
[12] Qingwei FAN, Shien HUI, Qulan ZHOU, Qinxin ZHAO, Tongmo XU. Experimental investigations on combustion characteristics of syngas composed of CH4, CO, and H2[J]. Front Chem Eng Chin, 2010, 4(4): 404-410.
[13] Rui LI, Baosheng JIN, Xiangru JIA, Zhaoping ZHONG, Gang XIAO, Xufeng FU. Research on combustion characteristics of bio-oil from sewage sludge[J]. Front Chem Eng Chin, 2009, 3(2): 161-166.
[14] Ruixia ZHANG, Zhaoping ZHONG, Yaji HUANG. Combustion characteristics and kinetics of bio-oil[J]. Front Chem Eng Chin, 2009, 3(2): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed