Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 481-493    https://doi.org/10.1007/s11705-018-1707-x
REVIEW ARTICLE
A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage
Huaping Zhao, Long Liu, Yong Lei()
Institute of Physics and IMN MacroNano®, Ilmenau University of Technology, Ilmenau 98693, Germany
 Download: PDF(958 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanostructures have drawn great attentions for functional device applications. Among the various techniques developed for fabricating arrayed nanostructures of functional materials, nanostructuring technique with porous anodic aluminum oxide (AAO) membrane as templates becomes more attractive owing to the superior geometrical characteristics and low-cost preparation process. In this mini review, we summarize our recent progress about functional nanostructuring based on perfectly-ordered AAO membrane to prepare perfectly-ordered nanostructure arrays of functional materials toward constructing high-performance energy conversion and storage devices. By employing the perfectly-ordered AAO membrane as templates, arrayed nanostructures in the form of nanodot, nanorod, nanotube and nanopore have been synthesized over a large area. These as-obtained nanostructure arrays have large specific surface area, high regularity, large-scale implementation, and tunable nanoscale features. All these advanced features enable them to be of great advantage for the performance improvement of energy conversion and storage devices, including photoelectrochemical water splitting cells, supercapacitors, and batteries, etc.

Keywords nanostructuring      perfectly-ordered AAO template      photoelectrochemical water splitting      sodium-ion batteries      supercapacitors     
Corresponding Author(s): Yong Lei   
Just Accepted Date: 15 January 2018   Online First Date: 19 April 2018    Issue Date: 18 September 2018
 Cite this article:   
Huaping Zhao,Long Liu,Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Front. Chem. Sci. Eng., 2018, 12(3): 481-493.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1707-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/481
Fig.1  (a) Schematic illustrating the fabrication process for perfectly-ordered AAO templates. SEM images of perfectly-ordered AAO templates with (b) hexagonal and (c) rectangular pore arrangement, respectively
Fig.2  Schematic illustration of the basic nanostructure arrays constructing based on perfectly-ordered AAO templates: (i) nanoparticle, (ii) nanowire, (iii) nanotube, (iv) nanopore, and (v) nanocone
Fig.3  (a) Schematic diagram of the procedure for AZO/TiO2/Au nanocone; (b) tilt-angle and (c?d) enlarged cross-sectional SEM images of Al nanocone; (e) photocurrent densities of the bare AZO/TiO2 and AZO/TiO2/Au nanocone electrodes; (f) ABPEs of the relevant electrodes; reproduced with permission from Ref. [35]. Copyright (2016) Wiley-VCH Verlag GmbH & Co. KGaA. (g) Schematic diagram of the fabrication process for CdS/Au PTP nanostructure array; (h) top-view and (i) cross-sectional SEM view of CdS/Au PTP photoanode; (j) chopped photocurrent densities of CdS/Au PTPs, pillars, and plane electrode. Reproduced with permission from [36]. Copyright (2017) American Chemical Society
Fig.4  (a) 3D illustration of perfectly-ordered Ag nanoparticle arrays fabricated by UTAM technique; (b) optical properties with different deposition heights. Reproduced with permission from Ref. [38]. Copyright (2015) American Chemical Society. (c) Typical SEM images of ITO/nano-Au NP arrays using a UTAM template; scale bar is 1 mm. The inset scale bar is 200 nm; (d) optical property of ITO/nano-Au NP arrays; (e) photocurrent–potential measurements of the as-grown (black), +10 V (red) and -10 V (blue) poled samples; (f) schematic band diagram and the hot electron transfer mechanisms for the+10 V poling condition. Reproduced with permission from Ref. [39]. Copyright (2016) Nature Publishing Group
Fig.5  (a) SEM image of perfectly-ordered Sb nanorod arrays; (b) the schematic illustration of the transport mechanism of Na-ions and electrons within Sb nanorod arrays electrode; (c) cycling performance at current densities of 0.2 and 0.5 A?g1; (d) rate performance at various current densities from 0.1 to 20 A?g1. Reproduced with permission from Ref. [46]. Copyright (2015) Royal Society of Chemistry
Fig.6  SEM images of nickel nanorod arrays (a) before and (b) after coated with TiO2, respectively; (c) rate capability of the three kinds of anodes; (d) discharge/charge profiles of the NTNAs anode at elevated rates; (e) schematic illustration of the comparison regarding electron transport and ion accessibility for the three kinds of anodes during the charge-discharge process. Reproduced with permission from Ref. [47]. Copyright (2015) American Chemical Society
Fig.7  (a) Schematic illustration of the fabrication process of Pt@MnO2 core-shell nanotube arrays electrodes; (b) specific capacitances of the electrodes at the different scan rates; (c) cycling stability of the electrode at random current densities up to 8000 cycles. Reproduced with permission from Ref. [14]. Copyright (2014) Wiley-VCH Verlag GmbH & Co. KGaA
Fig.8  (a) Schematic illustration of the fabrication process of nickel nanopore arrays. Representative SEM image of (b) nickel nanopore arrays and (c) MnO2 coated nickel nanopore arrays, respectively. (d) Cyclic voltammetry curves of MnO2 coated Ni nanopore arrays electrode at different scan rates. Reproduced with permission from Ref. [28]. Copyright (2014) Wiley-VCH Verlag GmbH & Co. KGaA
1 Dincer I. Renewable energy and sustainable development: A crucial review. Renewable & Sustainable Energy Reviews, 2000, 4(2): 157–175
https://doi.org/10.1016/S1364-0321(99)00011-8
2 Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Applied Materials & Interfaces, 2014, 6(18): 16082–16090
https://doi.org/10.1021/am504000n
3 Aricò A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
https://doi.org/10.1038/nmat1368
4 Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008, 20(15): 2878–2887
https://doi.org/10.1002/adma.200800627
5 Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J G. Oriented nanostructures for energy conversion and storage. ChemSusChem, 2008, 1(8-9): 676–697
https://doi.org/10.1002/cssc.200800087
6 Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171
https://doi.org/10.1039/c3cs00009e
7 Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8(11): 7047–7053
https://doi.org/10.1021/acsami.5b12427
8 Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yang D, Yao X. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small, 2015, 12(10): 1295–1301
https://doi.org/10.1002/smll.201503305
9 Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188
10 Xu Y, Zhou M, Lei Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Advanced Energy Materials, 2016, 6(10): 1502514
https://doi.org/10.1002/aenm.201502514
11 Wen L, Zhou M, Wang C, Mi Y, Lei Y. Nanoengineering energy conversion and storage devices via atomic layer deposition. Advanced Energy Materials, 2016, 6(23): 1600468
https://doi.org/10.1002/aenm.201600468
12 Zhou M, Xu Y, Xiang J, Wang C, Liang L, Wen L, Fang Y, Mi Y, Lei Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Advanced Energy Materials, 2016, 6(23): 1600448
https://doi.org/10.1002/aenm.201600448
13 Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428
https://doi.org/10.1002/smll.201500120
14 Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168
https://doi.org/10.1002/smll.201400436
15 Yang S, Lapsley M I, Cao B, Zhao C, Zhao Y, Hao Q, Kiraly B, Scott J, Li W, Wang L, Lei Y, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Advanced Functional Materials, 2013, 23(6): 720–730
https://doi.org/10.1002/adfm.201201466
16 Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066
https://doi.org/10.1021/jp202373b
17 Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106
https://doi.org/10.1063/1.1869545
18 Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56
https://doi.org/10.1016/S0167-577X(00)00411-0
19 Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5: 3960
https://doi.org/10.1038/ncomms4960
20 Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012
https://doi.org/10.1023/A:1006646219253
21 Lei Y, Yang S, Wu M, Wilde G. Surface patterning using templates: Concept, properties and device applications. Chemical Society Reviews, 2011, 40(3): 1247–1258
https://doi.org/10.1039/B924854B
22 Zhao H, Zhou M, Wen L, Lei Y. Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13: 790–813
https://doi.org/10.1016/j.nanoen.2015.02.024
23 Al-Haddad A, Zhan Z, Wang C, Tarish S, Vellacheria R, Lei Y. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning. ACS Nano, 2015, 9(8): 8584–8591
https://doi.org/10.1021/acsnano.5b03789
24 Wang Z, Cao D, Xu R, Qu S, Wang Z, Lei Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 2016, 19: 328–362
https://doi.org/10.1016/j.nanoen.2015.11.032
25 Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Applied Materials & Interfaces, 2015, 7(24): 13322–13328
https://doi.org/10.1021/acsami.5b01524
26 Zhao S, Roberge H, Yelon A, Veres T. New application of AAO template: A mold for nanoring and nanocone arrays. Journal of the American Chemical Society, 2006, 128(38): 12352–12353
https://doi.org/10.1021/ja062148+
27 Liang J, Chik H, Yin A, Xu J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. Journal of Applied Physics, 2002, 91(4): 2544–2546
https://doi.org/10.1063/1.1433173
28 Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659
https://doi.org/10.1002/adma.201402766
29 Wen L, Xu R, Mi Y, Lei Y. Multiple nanostructures based on anodized aluminium oxide templates. Nature Nanotechnology, 2017, 12(3): 244–250
https://doi.org/10.1038/nnano.2016.257
30 Lei Y. Functional nanostructuring for efficient energy conversion and storage. Advanced Energy Materials, 2016, 6(23): 1600461
https://doi.org/10.1002/aenm.201600461
31 Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y, et al. A CdSe thin film: A versatile buffer layer for improving the performance of TiO2 nanorod array: PbS quantum dot solar cells. Nanoscale, 2016, 8(19): 10198–10204
https://doi.org/10.1039/C6NR01658H
32 Liu L, Hou H, Wang L, Xu R, Lei Y, Shen S, Yang D, Yang W. A transparent CdS@TiO2 nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9(40): 15650–15657
https://doi.org/10.1039/C7NR05658C
33 Al-Haddad A, Wang Z, Zhou M, Tarish S, Vellacheri R, Lei Y. Constructing well-ordered CdTe/TiO2 Core/Shell nanowire arrays for solar energy conversion. Small, 2016, 12(40): 5538–5542
https://doi.org/10.1002/smll.201601412
34 Chi D, Lu S, Xu R, Liu K, Cao D, Wen L, Mi Y, Wang Z, Lei Y, Qu S, et al.Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale, 2015, 7(37): 15251–15257
https://doi.org/10.1039/C5NR04069H
35 Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, Lei Y. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials, 2016, 6(1): 1501496
https://doi.org/10.1002/aenm.201501496
36 Xu R, Wen L, Wang Z, Zhao H, Xu S, Mi Y, Xu Y, Sommerfeld M, Fang Y, Lei Y. Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical activity. ACS Nano, 2017, 11(7): 7382–7389
https://doi.org/10.1021/acsnano.7b03633
37 Zhan Z, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4): 3862–3868
https://doi.org/10.1021/nn500713h
38 Zhan Z, Xu R, Mi Y, Zhao H, Lei Y. Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route. ACS Nano, 2015, 9(4): 583–4590
https://doi.org/10.1021/acsnano.5b01226
39 Wang Z, Cao D, Wen L, Xu R, Obergfell M, Mi Y, Zhan Z, Nasori N, Demsar J, Lei Y. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nature Communications, 2016, 7: 10348
https://doi.org/10.1038/ncomms10348
40 Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107
https://doi.org/10.1002/adfm.201705107
41 Xu Y, Zhou M, Zhang C, Wang C, Liang L, Fang Y, Wu M, Cheng L, Le Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38: 304–312
https://doi.org/10.1016/j.nanoen.2017.06.005
42 Wang C, Fang Y, Xu Y, Liang L, Zhou M, Zhao H, Lei Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Advanced Functional Materials, 2016, 26(11): 1777–1786
https://doi.org/10.1002/adfm.201504537
43 Zhou M, Xu Y, Wang C, Li Q, Xiang J, Liang L, Wu M, Zhao H, Lei Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524
https://doi.org/10.1016/j.nanoen.2016.12.005
44 Liang L, Xu Y, Wen L, Li Y, Zhou M, Wang C, Zhao H, Kaiser U, Lei Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 2017, 10(9): 3189–3201
https://doi.org/10.1007/s12274-017-1536-0
45 Liang L, Xu Y, Li Y, Dong H, Zhou M, Zhao H, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(4): 1749–1755
https://doi.org/10.1039/C6TA10345F
46 Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy & Environmental Science, 2015, 8(10): 2954–2962
https://doi.org/10.1039/C5EE00878F
47 Xu Y, Zhou M, Wen L, Wang C, Zhao H, Mi Y, Liang L, Fu Q, Wu M, Lei Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chemistry of Materials, 2015, 27(12): 4274–4280
https://doi.org/10.1021/acs.chemmater.5b00633
48 Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237
https://doi.org/10.1016/j.nanoen.2014.06.015
49 Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470
https://doi.org/10.1039/C4TA05905K
50 Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70
https://doi.org/10.1016/j.nanoen.2014.08.019
51 Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904
https://doi.org/10.1063/1.4864285
52 Grote F, Wen L, Lei Y. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256: 37–42
https://doi.org/10.1016/j.jpowsour.2013.12.029
53 Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696
https://doi.org/10.1002/adfm.201606696
54 Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1(1): 1600012
https://doi.org/10.1002/admt.201600012
55 Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. Journal of Organic Chemistry, 2016, 81(22): 11035–11042
https://doi.org/10.1021/acs.joc.6b01922
56 Nitti A, Bianchi G, Po R, Swager T M, Pasini D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic p-scaffolds. Journal of the American Chemical Society, 2017, 139(26): 8788–8791
https://doi.org/10.1021/jacs.7b03412
57 Nitti A, Po R, Bianchi G, Pasini D. Direct arylation strategies in the synthesis of p-extended monomers for organic polymeric solar cells. Molecules (Basel, Switzerland), 2016, 22(1): 21
https://doi.org/10.3390/molecules22010021
58 Xu Y, Zhou M, Lei Y. Organic materials for rechargeable sodium-ion batteries. Materials Today, 2018, 21(1): 60–78
https://doi.org/10.1016/j.mattod.2017.07.005
59 Wang C, Jiang C, Xu Y, Liang L, Zhou M, Jiang J, Singh S, Zhao H, Schober A, Lei Y. A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Advanced Materials, 2016, 28(41): 9182–9187
https://doi.org/10.1002/adma.201603240
60 Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, Zhao H, Schober A, Lei Y. Extended p-conjugated system for fast-charge and-discharge sodium-ion batteries. Journal of the American Chemical Society, 2015, 137(8): 3124–3130
https://doi.org/10.1021/jacs.5b00336
[1] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed