Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 247-251    https://doi.org/10.1007/s11705-018-1710-2
RESEARCH ARTICLE
Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths
Hanbin Zheng, Christine Picard, Serge Ravaine()
CNRS, CRPP, UMR 5031, Universite? de Bordeaux, F-33600, Pessac, France
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanostructured metal surfaces have been known to exhibit properties that deviate from that of the bulk material. By simply modifying the texture of a metal surface, various unique optical properties can be observed. In this paper, we present a simple two step electrochemical process combining electrodeposition and anodization to generate black gold surfaces. This process is simple, versatile and up-scalable for the production of large surfaces. The black gold films have remarkable optical behavior as they absorb more than 93% of incident light over the entire visible spectrum and also exhibit no specular reflectance. A careful analysis by scanning electron microscopy reveals that these unique optical properties are due to their randomly rough surface, as they consist in a forest of dendritic microstructures with a nanoscale roughness. This new type of black films can be fabricated to a large variety of substrates, turning them to super absorbers with potential applications in photovoltaic solar cells or highly sensitive detectors and so on.

Keywords nanostructuration      light absorption      coating      gold      electrodeposition      anodization     
Corresponding Author(s): Serge Ravaine   
Just Accepted Date: 02 February 2018   Online First Date: 13 April 2018    Issue Date: 09 May 2018
 Cite this article:   
Hanbin Zheng,Christine Picard,Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1710-2
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/247
Fig.1  SEM side views of (a,d) an Ano sample, (b,e) an Ele sample and (c,f) a Com sample
Fig.2  Comparison of the surface morphology of a dendrite of (a) an Ele and (b) a Com sample
Fig.3  (a) Photograph of a Com sample. Comparison of the (b) absolute and (c) specular reflectance measurements of the Ele (blue line), Ano (red line), and Com samples (black line). AOI: angle of incidence
Fig.4  Transmission (T, blue line), absolute reflectance (R, black line) and absorbance (A, red line) of a Com sample
1 Thoman A, Kern A, Helm H, Walther M. Nanostructured gold films as broadband terahertz antireflection coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195405
https://doi.org/10.1103/PhysRevB.77.195405
2 Vorobyev A Y, Guo C. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(19): 195422
https://doi.org/10.1103/PhysRevB.72.195422
3 Harris L, McGinnies R T, Siegel B M. The preparation and optical properties of gold blacks. Journal of the Optical Society of America, 1948, 38(7): 582–589
https://doi.org/10.1364/JOSA.38.000582
4 Hutley M C, Maystre D. The total absorption of light by a diffraction grating. Optics Communications, 1976, 19(3): 431–436
https://doi.org/10.1016/0030-4018(76)90116-4
5 Hartman N F, Gaylord T K. Antireflection gold surface-relief gratings: Experimental characteristics. Applied Optics, 1988, 27(17): 3738–3743
https://doi.org/10.1364/AO.27.003738
6 Kravets V G, Schedin F, Grigorenko A N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(20): 205405
https://doi.org/10.1103/PhysRevB.78.205405
7 Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
8 Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M. Structured metal film as a perfect absorber. Advanced Materials, 2013, 25(29): 3994–4000
https://doi.org/10.1002/adma.201300223
9 Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasi-omnidirectional total light absorption in nanostructured gold surfaces. Optical Materials Express, 2014, 4(6): 1236–1242
https://doi.org/10.1364/OME.4.001236
10 Toma M, Loget G, Corn R M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Letters, 2013, 13(12): 6164–6169
https://doi.org/10.1021/nl403496a
11 Alici K B, Bilotti F, Vegni L, Ozbay E. Experimental verification of metamaterial based subwavelength microwave absorbers. Journal of Applied Physics, 2010, 108(8): 083113
https://doi.org/10.1063/1.3493736
12 Cheng Y H, Yang H. Design, simulation, and measurement of metamaterial absorber. Microwave and Optical Technology Letters, 2010, 52(4): 877–880
https://doi.org/10.1002/mop.25068
13 Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 2011, 5(6): 4641–4647
https://doi.org/10.1021/nn2004603
14 Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
https://doi.org/10.1103/PhysRevLett.104.207403
15 Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
https://doi.org/10.1063/1.3442904
16 Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasi-total omnidirectional light absorption in nanostructured gold films. Applied Physics. A, Materials Science & Processing, 2014, 117(2): 471–475
https://doi.org/10.1007/s00339-014-8684-9
17 Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses. Applied Physics Letters, 2008, 92(4): 041914
https://doi.org/10.1063/1.2834902
18 Zheng H, Almeida R M, Rivera T, Ravaine S. Fabrication of broadband omnidirectional non-reflective gold surfaces by electrodeposition. Advanced Device Materials, 2015, 1(1): 11–16
https://doi.org/10.1179/2055031614Y.0000000003
19 Nishio K, Masuda H. Anodization of gold in oxalate solution to form a nanoporous black film. Angewandte Chemie International Edition, 2011, 50(7): 1603–1607
https://doi.org/10.1002/anie.201005700
20 Grillo R, Torrisi V, Ruffino F. An experimental study on the porosity of dealloyed AuAg leafs. Superlattices and Microstructures, 2016, 100: 780–791
https://doi.org/10.1016/j.spmi.2016.10.047
21 Abdelaziz R, Disci-Zayed D, Hedayati M K, Pöhls J H, Zillohu A U, Erkartal B, Chakravadhanula V S K, Duppel V, Kienle L, Elbahri M. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nature Communications, 2013, 4: 2400
https://doi.org/10.1038/ncomms3400
22 Maradudin A A. Light scattering and nanoscale surface roughness. Berlin: Springer, 2011
[1] Yaqin Wang, Lin Yang, Chunxiang Dall’Agnese, Gang Chen, Ai-Jun Li, Xiao-Feng Wang. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(1): 180-186.
[2] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[3] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[4] Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi. Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates[J]. Front. Chem. Sci. Eng., 2020, 14(3): 317-349.
[5] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[6] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[7] Merve İzmir, Batur Ercan. Anodization of titanium alloys for orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 28-45.
[8] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[9] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[10] Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
[11] Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
[12] Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson. Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels[J]. Front Chem Sci Eng, 2013, 7(3): 262-269.
[13] S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles[J]. Front Chem Sci Eng, 2012, 6(1): 112-122.
[14] Futao QIN, Zhijia YU, Xinhui FANG, Xinghua LIU, Xiangyu SUN. A novel composite coating mesh film for oil-water separation[J]. Front Chem Eng Chin, 2009, 3(1): 112-118.
[15] LI Jia, ZOU Jijun, ZHANG Xiangwen, GUO Wei, MI Zhentao. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Front. Chem. Sci. Eng., 2008, 2(2): 181-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed