Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 555-563    https://doi.org/10.1007/s11705-018-1715-x
REVIEW ARTICLE
Polyolefin-nanocomposites with special properties by in-situ polymerization
Walter Kaminsky()
Institute for Technical and Macromolecular Chemistry, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exceptionally strong polyolefin nanocomposites are synthesized by in-situ polymerization using soluble metallocene/methylaluminoxane (MAO) as catalysts in a two-step process. First, the soluble metallocene/MAO or other single site catalysts are absorbed on the surface of the nanofillers. Then by addition of ethene or propene, a polyolefin film is formed, covering the nanoparticles, layered silicates, or fibers. The resulting polyethylene and polypropylene nanocomposites are characterized by better physical and chemical properties such as stiffness, gas barrier properties, degradation temperatures, and crystallization rates. They show better mechanical properties than materials produced by mechanical blending. The thickness of the polyolefin can be controlled by the pressure of ethene or propene and by the polymerization time. Carbon fibers and carbon nanotubes are covered with isotactic or syndiotactic polypropylene. Because of the hydrophobic character of the carbon surface, the polymer is drawn on the fiber. This leads to a reinforced combined polymer with special properties. The crystallization temperature is 10 °C higher and therefore the crystallization rate up to 20 times faster than that of pure syndiotactic polypropylene. The form stability increases by 100% if 3 wt-% of carbon nanotubes are incorporated.

Keywords polyolefin nanocomposites      metallocenes      methylaluminoxane     
Corresponding Author(s): Walter Kaminsky   
Just Accepted Date: 02 March 2018   Online First Date: 15 August 2018    Issue Date: 18 September 2018
 Cite this article:   
Walter Kaminsky. Polyolefin-nanocomposites with special properties by in-situ polymerization[J]. Front. Chem. Sci. Eng., 2018, 12(3): 555-563.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1715-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/555
Fig.1  Unit structures of methylaluminoxane (MAO)
Fig.2  Zirconocenes with different symmetries suitable for the polymerization of olefins
Fig.3  Microstructures of polypropylenes obtained by various metallocene catalysts (hydrogen atoms of the backbone chain are not shown)
Fig.4  Reaction of methylaluminoxane (MAO) on the surface of nano-silica
Polymerization temperature /°C Propylene concentration /(mol?L−1) Catalyst amount /mol Activity/(kgPol·(molZr?h·molMon?L−1)) Melting point /°C Molecular weight /(g?mol−1)
0 1.4 1.30 × 10−6 600 149 790000
30 0.6 1.40 × 10−6 1800 137 370000
30 1.4 1.30 × 10 −6 2300 141 560000
30 3.5 6.00 × 10−7 2500 142 640000
60 1.4 7.00 × 10−7 3000 121 220000
Tab.1  Synthesis of sPP/M200 nanocomposites, average activity and polymer properties of sPP in relation to the polymerization temperature, propene concentration and catalyst amount
Fig.5  SEM micrograph of a composite of silica spheres (200 nm diameter) in a syndiotactic polypropylene matrix
Fig.6  Transmission electron microscopy (TEM) micrograph of sPP/CNF composite material. The CNF has a diameter of 100 nm
Fig.7  TEM micrograph of a MWCNT/iPP composite with a filler content of 1.6 wt-%
Fig.8  TEM micrographs of a MWCNT/iPP composite prepared by in-situ polymerization (left), and its top by higher resolution (right)
Fig.9  Rate constant of crystallization in dependence of the crystallization temperature for different syndiotactic PP composite materials
Filling grate /wt-% Molecular weight /(g•mol?1) Melting temperature /°C Temperature form stability /°C
0 1800000 160.2 48.7
0.9 1900000 161.3 60.4
1.6 1800000 160.9 69.5
2.3 2400000 161.0 71.5
Tab.2  Properties of iPP/MWCNT composite materials such as molecular weight, melting temperature, and temperature of form stability in dependence of the amount of MWCNT as fillera)
1 Kaminsky W. Polyolefins: 50 years after Ziegler and Natta. I: polyethylene and polypropylene; II: polyolefins by metallocene and other single site catalysts. In: Advances in Polymer Science. Berlin: Springer, 2013
2 Zhang R, Wang Z, Flisak Z, Hao X, Liu Q, Sun W H. Achieving branched polyethylene waxes by aryliminocyclooctapyridyl nickel precatalysts: Synthesis, characterization, and ethylene polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(16): 2601–2610
https://doi.org/10.1002/pola.28653
3 Hofmann D, Kurek K, Thomann R, Schwabe J, Mark S, Enders M, Tees T, Muelhaupt R. Tailored nanostructured HDPE wax/UHMWPE reactor blends as additives for melt-processable all-polyethylene composites and in situ UHMWPE polymerization fiber reinforcement. Macromolecules, 2017, 50(20): 8129–8139
https://doi.org/10.1021/acs.macromol.7b01891
4 Thomas S, Zaikov G E, Valsaraj S V. Recent Advances in Polymer Nanocomposites: Synthesis and Characterization. Leiden: Brill Publisher, 2010, 1–128
5 Cromer B M, Scheel S, Luinstra G A, Coughlin E B, Leeser A J. In-situ polymerization of isotactic polypropylene-nanographite nanocomposites. Polymer, 2015, 80: 275–281
https://doi.org/10.1016/j.polymer.2015.09.074
6 Bonduel D, Bredeau S, Alexandre M, Monteverde F, Dubois P. Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites: Effect of the catalytic system on the coating morphology. Journal of Materials Chemistry, 2007, 17(22): 2359–2366
https://doi.org/10.1039/b701764b
7 Dittrich B, Wartig K A, Hofmann D, Muelhaupt R. Carbon black, multiwall carbon nanotubes, expanded graphite and functional graphene flame retarded polypropylene. Polymers for Advanced Technologies, 2013, 24: 916–926
https://doi.org/10.1002/pat.3165
8 Scot S L, Peoples B C, Yung C, Rojas R S, Khanna V, Sano H, Suzuki T, Shimizu F. Highly dispersed clay-polyolefin nanocomposites free of compatibilizers, via the in-situ polymerization of olefins by clay-supported catalysts. Chemical Communications, 2008, 35(35): 4186–4188
https://doi.org/10.1039/b718241d
9 Xalter R, Pelascini F, Mülhaupt R. Ethylene polymerization, on line particle growth monitoring, and in situ nanocomposite formation using catalysts supported on arylsulfonicacid modified boehmites. Macromolecules, 2008, 41(9): 3136–3143
https://doi.org/10.1021/ma702623e
10 Bischoff E, Concalves G P O, Simon D A, Schrekker H S, Lavorgna M, Ambrosio L, Liberman S A, Mauler R S. Unrevealing the effect of different dispersion agents on the properties of ethylene-propylene copolymers/halloysite nanocomposites. Materials & Design, 2017, 131: 232–241
https://doi.org/10.1016/j.matdes.2017.06.033
11 Kaminsky W. Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules, 2012, 45(8): 3289–3297
https://doi.org/10.1021/ma202453u
12 Kaminsky W, Funck A, Klinke C. In-situ polymerization of olefins with nanoparticles or fibers by metallocene catalysts. Topics in Catalysis, 2008, 48(1-4): 84–90
https://doi.org/10.1007/s11244-008-9044-9
13 Kaminsky W, Sinn H. Methylaluminoxane: Key component for new polymerization catalysts. Advances in Polymer Science, 2013, 258: 1–28
https://doi.org/10.1007/12_2013_226
14 Arikan B, Stadler F J, Kaschta J, Muenstedt H, Kaminsky W. Synthesis and characterization of novel ethene-graft-ethene/propene copolymers. Macromolecular Rapid Communications, 2007, 28(14): 1472–1478
https://doi.org/10.1002/marc.200700161
15 Kaminsky W, Derlin S, Hoff M. Copolymerization of propylene and norbornene with different metallocene catalysts. Polymer, 2007, 48(25): 7271–7278
https://doi.org/10.1016/j.polymer.2007.10.013
16 Duboi P, Alexandre M, Hindryckx F, Jerome R. Polyolefin-based composites by polymerization-filling technique. Journal of Macromolecular Science: Part C, 1998, 38(3): 511–565
https://doi.org/10.1080/15583729808546031
17 Alexandre M, Martin E, Dubois P, Mart M G, Jerome R. Polymerization-filling technique: An efficient way to improve the mechanical properties of polyethylene composites. Chemistry of Materials, 2001, 13(2): 236–237
https://doi.org/10.1021/cm001167u
18 Kaminsky W. Metallocene based polyolefin nanocomposites. Materials (Basel), 2014, 7(3): 1995–2013
https://doi.org/10.3390/ma7031995
19 Coates G W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chemical Reviews, 2000, 100(4): 1223–1252
https://doi.org/10.1021/cr990286u
20 Kaminsky W, Fernandes M. Discovery and development of metallocene-based polyolefins with special properties. Polyolefins Journal, 2015, 2: 1–16
21 Matsui S, Fujita T. FI-catalysts: Super active new ethylene polymerization catalyst. Catalysis Today, 2001, 66(1): 63–73
https://doi.org/10.1016/S0920-5861(00)00605-2
22 Kaminsky W, Wiemann K. Polypropylene/silica-nanocomposites synthesized by in-situ polymerization. . Expected Materials for the Future (Japan), 2003, 3(11): 6–12
23 Ferreira F V, Menzes B R, Franceschi W, Ferreira E V, Lozano K, Cividanes L S, Coutinho A R, Thim G P. Influence of carbon nanotube concentration and sonification temperature on mechanical properties of HDPE/CNT nanocomposites. Fullerenes, Nanotubes, and Carbon Nanostructures, 2017, 25(9): 531–539
https://doi.org/10.1080/1536383X.2017.1359553
24 Kaminsky W. Production of polyolefins by metallocene catalysts and their recycling by pyrolysis. Macromolecular Symposia, 2016, 360(1): 10–22
https://doi.org/10.1002/masy.201500127
25 Avila-Orta C A, Raundry-Lopez C E, Davila-Rodriguez M V, Aguirre-Figueroa Y A, Crruz-Delgado V J, Neira-Velazquez M G, Medellin-Rodriguez F J, Hsiao B S. Morphology, thermal stability, and electrical conductivity of polymer nanocomposites of isotactic poypropylenes/multi-walled carbon nanotubes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62(12): 635–641
https://doi.org/10.1080/00914037.2013.769159
26 Du S, Wang X, Zhang W, Flisak Z, Sun Y, Sun W H. The practical ethylene polymerization for vinyl-polyethylenes: Synthesis, characterization and catalytic behavior of α,α′-bisimino-2,3:5,6-bis(pentametylene)pyridyliron chlorides. Polymer Chemistry, 2016, 7(25): 4188–4197
https://doi.org/10.1039/C6PY00745G
27 Wang Z, Liu Q, Solan G A, Sun W H. Recent advances in Ni-mediated ethylene chain groth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coordination Chemistry Reviews, 2017, 350: 68–83
https://doi.org/10.1016/j.ccr.2017.06.003
[1] Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU. Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and methylaluminoxane[J]. Front Chem Sci Eng, 2011, 5(1): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed