Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 457-466    https://doi.org/10.1007/s11705-018-1716-9
RESEARCH ARTICLE
Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol
Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan()
College of Light Industry and Textile and Food Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(365 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biodegradable poly(ether-imide-ester) elastomers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N′,N-bis(2-carboxyethyl)-pyromellitimide which was derived from pyromellitic dianhydride and glycine. The chemical structures, crystallinities, thermal stabilities, mechanical properties, hydrophilicities and biodegradabilities of these elastomers were investigated. The hard segments of the linear aliphatic poly(ether-ester) exhibited monoclinic chain packing. Increasing the amount of aromatic bisimide moieties in the poly(ether-ester) reduced the crystallinity of the material and improved the thermal stability and tensile strength of the elastomers. In addition, introducing a suitable amount of aromatic bisimide moieties into the poly(ether-ester) backbones endowed the elastomers with improved biodegradability but too many aromatic bisimide groups reduced the biodegradability of the elastomers.

Keywords thermoplastic elastomers      biodegradability      thermo-stability      mechanical property      aromatic bisimide moiety     
Corresponding Author(s): Jianwu Lan   
Just Accepted Date: 02 March 2018   Online First Date: 07 June 2018    Issue Date: 18 September 2018
 Cite this article:   
Jiaojiao Shang,Guo Yao,Ronghui Guo, et al. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1716-9
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/457
Code BDA/SA /mol-% BD/PEG1000 /mol-% ηc) /(dL?g?1) Mnd) /(103 g?mol?1)
Feed Found a) Feed Found b)
P-0 0/100 0 77.76/22.24 80.07/19.93 1.074 28.05
P-1 50/50 35.09/64.91 72.38/27.62 76.48/23.52 1.111 28.05
P-2 70/30 53.55/46.45 70.67/29.33 71.98/28.02 1.052 34.04
P-3 90/10 75.31/24.69 66.09/33.91 66.78/33.22 0.997 20.37
Tab.1  Characterization of the prepared elastomers
Fig.1  Scheme 1 The synthetic route and chemical structure of the prepared elastomers
Fig.2  FTIR spectra of the synthesized polymers (P-0 and P-2)
Fig.3  1H NMR spectrum of the synthesized polymer (P-2)
Fig.4  WXRD patterns of the prepared elastomers
Fig.5  DSC curves of the prepared elastomers
Fig.6  TGA curves of the prepared elastomers
Elastomers Tm /°C a) T5 /°C b) T20 /°C b) T50 /°C b) Char yield at 500°C /wt-% b)
P-0 76.80 337.93 386.13 409.99 3.65
P-1 157.58 356.95 389.70 412.39 12.24
P-2 209.21 372.68 398.11 417.63 17.86
P-3 219.15 374.55 401.47 423.16 23.74
Tab.2  The characteristic thermal data from DSC and TGA measurements
Fig.7  Storage modulus (E′) curves of the prepared elastomers
Fig.8  Loss modulus (E′′) curves of the prepared elastomers
Polymers Tgs /°C a) E′ /MPa b) Stress /MPa c) Strain /% c)
P-0 ?34.60 34 8.24 75.83
P-1 ?34.44 56 7.68 935.00
P-2 ?32.63 73 10.19 589.17
P-3 ?27.71 94 13.38 530.63
Tab.3  The DMTA and strain-stress data of the prepared elastomers
Fig.9  Stress-strain curves of the prepared elastomers
Fig.10  Water absorption and contact angle of the prepared elastomeric films
Fig.11  Weight loss of elastomers during hydrolytic degradation in phosphate buffer (pH= 7.4) at 37 °C
Fig.12  Weight loss of elastomers during enzymatic degradation in different enzyme solution concentrations
Fig.13  SEM images of P-1 elastomer film (a) before and (b) after enzymatic degradation
1 Osswald T A, Menges G. Materials Science of Polymers for Engineers.Munich: Hanser Publishing, 2012, 3–15
2 Li W C, Tse H F, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 2016, 566(1): 333–349
https://doi.org/10.1016/j.scitotenv.2016.05.084
3 North E J, Halden R U. Plastics and environmental health: The road ahead. Reviews on Environmental Health, 2013, 28(1): 1–8
https://doi.org/10.1515/reveh-2012-0030
4 Koelmans A A, Gouin T, Thompson R, Wallace N, Arthur C. Plastics in the marine environment. Environmental Toxicology and Chemistry, 2014, 33(1): 5–10
https://doi.org/10.1002/etc.2426
5 Sheavly S B, Register K M. Marine debris & plastics: Environmental concerns, sources, impacts and solutions. Journal of Polymers and the Environment, 2007, 15(4): 301–305
https://doi.org/10.1007/s10924-007-0074-3
6 Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 2009, 157(11): 2893–2902
https://doi.org/10.1016/j.envpol.2009.05.051
7 Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made. Science Advances, 2017, 3(7): 1–5
https://doi.org/10.1126/sciadv.1700782
8 Faure F, Corbaz M, Baecher H, De Alencastro L F. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences, 2012, 65(1): 157–164
9 Derraik J G B. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 2002, 44(9): 842–852
https://doi.org/10.1016/S0025-326X(02)00220-5
10 Avio C G, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 2017, 128(1): 2–11
https://doi.org/10.1016/j.marenvres.2016.05.012
11 Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 2007, 15(2): 125–150
https://doi.org/10.1007/s10924-007-0053-8
12 Rydz J, Sikorska W, Kyulavska M, Christova D. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. International Journal of Molecular Sciences, 2015, 16(1): 564–596
https://doi.org/10.3390/ijms16010564
13 Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724
https://doi.org/10.1007/s10853-009-3770-7
14 Bonart R. Thermoplastic Elastomers. Polymer, 1979, 20(11): 1389–1403
https://doi.org/10.1016/0032-3861(79)90280-5
15 Djonlagic J, Nikolic M S. Thermoplastic Copolyester Elastomers. Handbook of Engineering and Speciality Thermoplastics: Polyethers and Polyesters.Salem: John Wiley & Sons and Scrivener Publishing, 2011, 377–427
16 Martello M T, Hillmyer M A. Polylactide-poly(6-methyl-ε-caprolactone)-polylactide thermoplastic elastomers. Macromolecules, 2011, 44(21): 8537–8545
https://doi.org/10.1021/ma201063t
17 Zhang J W, Liu F, Wang J G, Na H N, Zhu J. Synthesis of poly(butylene terephthalate)-poly(tetramethylene glycol) copolymers using terephthalic acid as starting material: A comparation between two synthetic strategies. Chinese Journal of Polymer Science, 2015, 33(9): 1283–1293
https://doi.org/10.1007/s10118-015-1673-4
18 Kylmä J, Seppälä J V. Synthesis and characterization of a biodegradable thermoplastic poly(ester-urethane) elastomer. Macromolecules, 1997, 30(10): 2876–2882
https://doi.org/10.1021/ma961569g
19 Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromolecular Bioscience, 2007, 7(7): 921–928
https://doi.org/10.1002/mabi.200700027
20 Huang X, Li C, Zheng L, Zhang D, Guan G, Xiao Y. Synthesis, characterization and properties of biodegradable poly(butylene succinate)-block-poly(propylene glycol) segmented copolyesters. Polymer International, 2009, 58(8): 893–899
https://doi.org/10.1002/pi.2609
21 Huang S, Jiang S. Structures and morphologies of biocompatible and biodegradable block copolymers. RSC Advances, 2014, 4(47): 24566–24583
https://doi.org/10.1039/C4RA03043E
22 Nakayama Y, Aihara K, Yamanishi H, Fukuoka H, Tanaka R, Cai Z, Shiono T. Synthesis of biodegradable thermoplastic elastomers from ε-caprolactone and lactide. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(3): 489–495
https://doi.org/10.1002/pola.27463
23 Qiu H, Yang Z, Shah M I, Mao Z, Ling J. [PCL-b-P(THF-co-CL)]m multiblock copolymer synthesized by Janus polymerization. Polymer, 2017, 128(16): 71–77
https://doi.org/10.1016/j.polymer.2017.08.040
24 Taguchi S. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst. Frontiers of Chemical Science and Engineering, 2017, 11(1): 139–142
https://doi.org/10.1007/s11705-017-1636-0
25 Lee C W, Masutani K, Kimura Y. Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly(butylene succinate) (PBS): An efficient route to high-molecular-weight PBS and block copolymers of PBS. Polymer, 2014, 55(22): 5673–5679
https://doi.org/10.1016/j.polymer.2014.08.028
26 Oishi A, Zhang M, Nakayama K, Masuda T, Taguchi Y. Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polymer Journal, 2006, 38(7): 710–715
https://doi.org/10.1295/polymj.PJ2005206
27 Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto H K. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: Cloning, sequencing, and characterization. Applied Microbiology and Biotechnology, 2013, 97(7): 2951–2959
https://doi.org/10.1007/s00253-012-4188-8
28 Zhang Y, Feng Z, Zhang A. Synthesis and characterization of poly(butylene terephthalate)-co-poly(butylene succinate)-block-poly(ethylene glycol) segmented block copolymers. Polymer International, 2003, 52(8): 1351–1358
https://doi.org/10.1002/pi.1222
29 Lin S, Lan J, Guo R, Shang J, He W. Preparation, mechanical properties and thermal degradation kinetics of a novel poly(ester-ether-imide) elastomer based on N′,N-bis(2-hydroxyethyl)-pyromellitimide unit. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(4): 426–434
https://doi.org/10.1080/10601325.2013.768427
30 Oprea S. Novel quinoline-based polyurethane elastomers. The effect of the hard segment structure in properties enhancement. Journal of Polymer Research, 2012, 19(19): 9769–9778
31 Ku C, Lee Y. Microphase separation in amorphous poly(imide siloxane) segmented copolymers. Polymer, 2007, 48(12): 3565–3573
https://doi.org/10.1016/j.polymer.2007.04.028
32 Yeganeh H, Shamekhi M A. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer, 2004, 45(2): 359–365
https://doi.org/10.1016/j.polymer.2003.11.006
33 Mehdipour-Ataei S, Amirshaghaghi A. Novel thermally stable poly(ether imide ester)s from 2,6-bis(4-aminophenoxy) pyridine. Journal of Applied Polymer Science, 2009, 6(2): 570–576
34 Lin S, Guo R, Lan J, Chen S, Shang J. Synthesis and properties of novel thermoplastic poly(ester-ether-imide) elastomers derived from 4,4′-bis(N-trimellitimide)-diphenylether unit with excellent thermal stability. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012, 49(12): 1052–1060 doi:10.1080/10601325.2012.728473
35 Shang J, Yao G, Lin S, Lan J, Huang X, He W. Synthesis and properties of novel thermal stable thermoplastic poly(ester-imide-ether) elastomers based on N,N′-bis(2-carboxyethyl)-3,3′,4,4′ biphenyltetracarboxylimide unit with excellent mechanical properties. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(12): 1218–1224
https://doi.org/10.1080/10601325.2014.843398
36 Lin S, He W, Lan J, Guo R, Shang J, Chen S. Synthesis and characterization of new thermoplastic poly(ester-ether-imide) elastomers derived from N′,N-bis(2-hydroxyethyl)-pyromellitimide unit with excellent thermal stability and good fiber-forming property. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(4): 416–425
https://doi.org/10.1080/10601325.2013.768159
37 Lin S, Shang J, Lan J, Guo R, Huang X, He W. Mechanical properties and thermal degradation kinetics of a novel thermally stable thermoplastic poly(ester-ether) elastomer containing N′,N-bis(2-carboxymethyl) pyromellitimide unit. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(10): 1060–1069
https://doi.org/10.1080/10601325.2013.821912
38 Tsou C, Kao B, Suen M, Yang M, Wu T, Tsou C, Chen J. Crystallisation behaviour and biocompatibility of poly(butylene succinate)/poly(lactic acid) composites. Materials Research Innovations, 2014, 18(2): 372–376
39 Zhang M, Gu J, Zhu X, Gao L, Li X, Yang X, Tu Y, Li C Y. Synthesis of poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) multiblock terpolymers via a facile PROP method. Polymer, 2017, 130(9): 199–208
https://doi.org/10.1016/j.polymer.2017.10.010
40 Debuissy T, Pollet E, Avérous L. Synthesis and characterization of block poly(ester-ether-urethane)s from bacterial poly(3-hydroxybutyrate) oligomers. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(11): 1949–1961
https://doi.org/10.1002/pola.28567
41 Saeed A, Erben M F, Bolte M. Twisted imide bond in noncyclic imides. Synthesis and structural and vibrational properties of N,N-bis(furan-2-carbonyl)-4-chloroaniline. Journal of Organic Chemistry, 2012, 77(10): 4688–4695
https://doi.org/10.1021/jo300360b
[1] Kaojin Wang, Satu Strandman, X. X. Zhu. A mini review: Shape memory polymers for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed