Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 537-554    https://doi.org/10.1007/s11705-018-1719-6
REVIEW ARTICLE
Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting
Wenfu Xie, Zhenhua Li, Mingfei Shao(), Min Wei
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(1040 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.

Keywords layered double hydroxides (LDHs)      core-shell nanoarrays      oxygen evolution reaction (OER)      hydrogen evolution reaction (HER)      photoelectrochemical water splitting (PEC)     
Corresponding Author(s): Mingfei Shao   
Just Accepted Date: 05 March 2018   Issue Date: 18 September 2018
 Cite this article:   
Wenfu Xie,Zhenhua Li,Mingfei Shao, et al. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1719-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/537
Fig.1  (a) Schematic illustration of fabricating self-standing 3D core-shell Cu@NiFe-LDH electrocatalyst; (b) SEM and (c) TEM images of Cu@NiFe-LDH; (d) OER and (e) HER performances for Cu@NiFe-LDH in 1.0 mol?L?1 KOH (Reprinted from Ref. [78], with permission from Royal Society of Chemistry)
Fig.2  (a) Schematic illustration for the construction of NiCo2O4@NiFe-LDH nanoarray; (b) SEM image of NiCo2O4@NiFe-LDH nanoarray (reprinted from Ref. [88], with permission from American Chemical Society); (c) schematic illustration for the formation process of NiCo2O4@NiFe-LDH nanoarray; (d) SEM image of NiCo2O4@NiFe-LDH nanoarray; (e) OER and (f) HER polarization curves conducted in 1.0 mol?L?1 KOH (Reprinted from Ref. [89], with permission from Wiley)
Fig.3  (a) Preparation Procedure for NiCo2O4@FeCoNi-LDH nanoarray; (b) SEM and (c) TEM images of NiCo2O4@FeCoNi-LDH nanoarray; (d) OER and (e) HER polarization curves conducted in 1.0 mol?L?1 KOH (Reprinted from Ref. [98], with permission from American Chemical Society); (f) schematic illustration of the hierarchical Co(OH)2@NiCoFe-LDH nanoarray; (g) SEM image of the hierarchical Co(OH)2@NiCoFe-LDH nanoarray; (h) OER polarization curves conducted in 1.0 mol?L?1 KOH (Reprinted from Ref. [99], with permission from Royal Society of Chemistry)
Fig.4  (a) Schematic illustration for the fabrication of TiO2@ZnFe-LDH; (b) SEM images of TiO2@ZnFe-LDH (reprinted from Ref [104], with permission from Elsevier); (c) schematic illustration for the fabrication of TiO2/rGO@NiFe-LDH; (d) SEM image of TiO2/rGO@NiFe-LDH; (e) current-voltage (J-V) curves; (f) calculated photoconversion efficiency as a function of applied voltage (Reprinted from Ref. [105], with permission from Royal Society of Chemistry)
Fig.5  (a) Schematic illustration for the synthesis process of NiCo2S4@NiFe-LDH; (b) adsorption geometries of the intermediates *H and *OH on the surfaces of NiFe-LDH and NiCo2S4@NiFe-LDH, and interfacial electron transfers between NiCo2S4 and NiFe-LDH. Reprinted from Ref. [120], with permission from American Chemical Society; (c) schematic illustration for the synthesis of Ni3S2@NiFe-LDH; SEM images of (d) Ni3S2 and (e) Ni3S2@NiFe-LDH; (f) OER polarization curves conducted in 1.0 mol?L?1 KOH (Reprinted from Ref. [121], with permission from Wiley)
Fig.6  (a) Synthetic strategy to prepare NiSe@NiFe-LDH; (b) OER polarization curves conducted in 1.0 mol?L?1 KOH (reprinted from Ref. [122], with permission from American Chemical Society); (c) schematic illustration of designing (Ni,Co)0.85Se and (Ni,Co)0.85Se@NiCo-LDH; (d) SEM and (e) TEM of (Ni, Co)0.85Se@NiCo-LDH; (f) OER polarization curves conducted in 1.0 mol?L?1 KOH and (g) the corresponding Tafel plots (Reprinted from Ref. [123], with permission from Wiley)
Fig.7  SEM images of (a) NiFe-LDH and (b) NiFe-LDH@NiFeB; (c) OER polarization curves conducted in 0.1 mol?L?1 K-Bi and (d) the corresponding Tafel plots (reprinted from Ref. [128], with permission from American Chemical Society); SEM images of (e) CoFe-LDH and (f) CoFe-LDH@CoFeB; (g) OER polarization curves conducted in 0.1 mol?L?1 K-Bi and (h) the corresponding Tafel plots (Reprinted from Ref. [129], with permission from American Chemical Society)
Fig.8  (a) Schematic illustration for the formation of CNTs@NiCo-LDH; (b) SEM and (c) TEM image of CNTs@NiCo-LDH; (d) OER polarization curves conducted in 1.0 mol?L?1 KOH (reprinted from Ref. [152], with permission from American Chemical Society); (e) illustration of the fabrication procedure for HPGC@NiFe-LDH; (f) SEM image of HPGC@NiFe-LDH; (g) OER polarization curves conducted in 1.0 mol?L?1 KOH (Reprinted from Ref. [145], with permission from Royal Society of Chemistry)
Electrocatalyst Electrolyte η /mV for OER @j/(mA?cm?2) η /mV for HER @j/(mA?cm?2) Cell voltage for water splitting /V @j/(mA?cm?2) Ref.
Cu@NiFe-LDH 1.0 mol?L?1 KOH 199@10 116@10 1.54@10 [78]
Cu@CoFe-LDH 1.0 mol?L?1 KOH 240@10 171@10 1.61@10 [79]
NiCo2O4@NiFe-LDH 1.0 mol?L?1 KOH 290@50 192@10 1.60@10 [88]
NiCo2O4@NiFe-LDH 1.0 mol?L?1 KOH 340@1200 105@10 1.67@10 [89]
NiCo2O4@FeCoNi-LDH 1.0 mol?L?1 KOH 302@50 151@20 1.65@50 [98]
Co(OH)2@NiCoFe-LDH 1.0 mol?L?1 KOH 257@80 ? ? [99]
NiCo2S4@NiFe-LDH 1.0 mol?L?1 KOH 201@60 200@10 1.60@10 [120]
Ni3S2@NiFe-LDH 1.0 mol?L?1 KOH 165@10 ? ? [121]
NiSe@NiFe-LDH 1.0 mol?L?1 KOH 240@100 276@100 1.53@10 [122]
(Ni,Co)0.85Se@NiCo-LDH 1.0 mol?L?1 KOH 216@10 ? ? [123]
NiFe-LDH@NiFe-Bi 0.1/0.5 mol?L?1 K-Bi 444/363@10 ? ? [128]
CoFe LDH@CoFe-Bi 0.1 mol?L?1 K-Bi 418@10 ? ? [129]
3D-ErGO@NiFe LDH 1.0 mol?L?1 KOH 259@10 ? ? [143]
CQDs@NiFe-LDH 1.0 mol?L?1 KOH 235@10 ? ? [38]
MWCNTs@NiCo LDH 0.1 mol?L?1 KOH 440@10 ? ? [152]
HPGC@NiFe LDH 1.0 mol?L?1 KOH 265@10 ? ? [145]
Graphene@NiFe-LDH 1.0 mol?L?1 KOH 210@10 115@20 1.50@20 [148]
EG/Co0.85Se@NiFe-LDH 1.0 mol?L?1 KOH 270@150 260@20 1.71@20 [153]
Tab.1  Comparison studies for various LDH-based core-shell nanoarrays and their OER/HER performances
1 Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998
2 Yang Y, Zhang H L, Lin Z H, Liu Y, Chen J, Lin Z Y, Zhou Y S, Wong C P, Wang Z L. A hybrid energy cell for self-powered water splitting. Energy & Environmental Science, 2013, 6(8): 2429–2434
https://doi.org/10.1039/c3ee41485j
3 Lu Y C, Gasteiger H A, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. Journal of the American Chemical Society, 2011, 133(47): 19048–19051
https://doi.org/10.1021/ja208608s
4 Zhou H Q, Yu F, Huang Y F, Sun J Y, Zhu Z, Nielsen R J, He R, Bao J M, Goddard W A III, Chen S, et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7: 12765–12772
https://doi.org/10.1038/ncomms12765
5 Zhu Y P, Ma T Y, Jaroniec M, Qiao S Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angewandte Chemie International Edition, 2017, 56(5): 1324–1328
https://doi.org/10.1002/anie.201610413
6 Li D, Baydoun H, Kulikowski B, Brock S L. Boosting the catalytic performance of iron phosphide nanorods for the oxygen evolution reaction by incorporation of manganese. Chemistry of Materials, 2017, 29(7): 3048–3054
https://doi.org/10.1021/acs.chemmater.7b00055
7 Pei Z X, Li H F, Huang Y, Xue Q, Huang Y, Zhu M S, Wang Z F, Zhi C Y. Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy & Environmental Science, 2017, 10(3): 742–749
https://doi.org/10.1039/C6EE03265F
8 Ren F M, Wang Z, Luo L F, Lu H Y, Zhou G, Huang W X, Hong X, Wu Y E, Li Y D. Utilization of active Ni to fabricate Pt-Ni nanoframe/NiAl layered double hydroxide multifunctional catalyst through in situ precipitation. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(38): 13181–13185
https://doi.org/10.1002/chem.201501923
9 Zhou L, Shao M F, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26(6): 1094–1106
https://doi.org/10.1016/j.jechem.2017.09.015
10 Zhang Z C, Liu Y, Chen B, Gong Y, Gu L, Fan Z X, Yang N L, Lai Z C, Chen Y, Wang J, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Advanced Materials, 2016, 28(46): 10282–10286
https://doi.org/10.1002/adma.201604829
11 He D S, He D P, Wang J, Lin Y, Yin P Q, Hong X, Wu Y, Li Y D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. Journal of the American Chemical Society, 2016, 138(5): 1494–1497
https://doi.org/10.1021/jacs.5b12530
12 Ren F M, Lu H Y, Liu H T, Wang Z, Wu Y E, Li Y D. Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(47): 23660–23663
https://doi.org/10.1039/C5TA06648D
13 Yan Y, Xia B Y, Ge X M, Liu Z L, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(50): 18062–18067
https://doi.org/10.1002/chem.201503777
14 Qi J, Zhang W, Xiang R J, Liu K Q, Wang H Y, Chen M X, Han Y Z, Cao R. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Advancement of Science, 2015, 2(10): 5203–5208
15 Cheng Y F, Liao F, Shen W, Liu L B, Jiang B B, Li Y Q, Shao M W. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale, 2017, 9(47): 18977–18982
https://doi.org/10.1039/C7NR06859J
16 Tan Y W, Wang H, Liu P, Shen Y H, Cheng C, Hirata A, Fujita T, Tang Z, Chen M W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261
https://doi.org/10.1039/C6EE01109H
17 Zhou J, Zhuang H L L, Wang H. Layered tetragonal zinc chalcogenides for energy-related applications: From photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale, 2017, 9(44): 17303–17311
https://doi.org/10.1039/C7NR04289B
18 Wang J J, Meng J, Li Q X, Yang J L. Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2016, 18(25): 17029–17036
https://doi.org/10.1039/C6CP01001F
19 Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169–1704180
https://doi.org/10.1002/adfm.201704169
20 Kibria M G, Chowdhury F A, Zhao S, AlOtaibi B, Trudeau M L, Guo H, Mi Z. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nature Communications, 2015, 6(1): 6797–6805
https://doi.org/10.1038/ncomms7797
21 Kumar A, Bhattacharyya S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Applied Materials & Interfaces, 2017, 9(48): 41906–41915
https://doi.org/10.1021/acsami.7b14096
22 Yang Y, Niu S W, Han D D, Liu T Y, Wang G M, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555–1700581
https://doi.org/10.1002/aenm.201700555
23 Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, et al. Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12747–12751
https://doi.org/10.1039/C7TA02835K
24 Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 2017, 41: 583–590
https://doi.org/10.1016/j.nanoen.2017.10.009
25 Zhang C L, Shao M F, Ning F Y, Xu S M, Li Z H, Wei M, Evans D G, Duan X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 2015, 12: 231–239
https://doi.org/10.1016/j.nanoen.2014.12.037
26 Nai J W, Yin H J, You T T, Zheng L R, Zhang J, Wang P X, Jin Z, Tian Y, Liu J Z, Tang Z Y, et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Advanced Energy Materials, 2015, 5(10): 1401880–1401887
https://doi.org/10.1002/aenm.201401880
27 Lu Z Y, Qian L, Tian Y, Li Y P, Sun X M, Duan X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications, 2016, 52(5): 908–911
https://doi.org/10.1039/C5CC08845C
28 Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 380–388
https://doi.org/10.1021/acssuschemeng.7b02654
29 Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting. Journal of Power Sources, 2017, 347: 193–200
https://doi.org/10.1016/j.jpowsour.2017.02.062
30 Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013, 135(23): 8452–8455
https://doi.org/10.1021/ja4027715
31 Shao M F, Ning F Y, Wei M, Evans D G, Duan X. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Advanced Functional Materials, 2014, 24(5): 580–586
https://doi.org/10.1002/adfm.201301889
32 Zhang C, Shao M F, Zhou L, Li Z H, Xiao K M, Wei M. Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Applied Materials & Interfaces, 2016, 8(49): 33697–33703
https://doi.org/10.1021/acsami.6b12100
33 Zhou L, Shao M F, Zhang C, Zhao J W, He S, Rao D M, Wei M, Evans D G, Duan X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Advanced Materials, 2016, 29(6): 1604080–1604088
https://doi.org/10.1002/adma.201604080
34 Han J B, Dou Y B, Zhao J W, Wei M, Evans D G, Duan X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small, 2013, 9(1): 98–106
https://doi.org/10.1002/smll.201201336
35 Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science (Cambridge), 2015, 6(11): 6624–6631
https://doi.org/10.1039/C5SC02417J
36 Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Advanced Functional Materials, 2013, 23(28): 3513–3518
https://doi.org/10.1002/adfm.201202825
37 Chen H, Hu L F, Chen M, Yan Y, Wu L M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Advanced Functional Materials, 2014, 24(7): 934–942
https://doi.org/10.1002/adfm.201301747
38 Tang D, Liu J, Wu X Y, Liu R H, Han X, Han Y Z, Huang H, Liu Y, Kang Z H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Applied Materials & Interfaces, 2014, 6(10): 7918–7925
https://doi.org/10.1021/am501256x
39 Zou X, Goswami A, Asefa T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. Journal of the American Chemical Society, 2013, 135(46): 17242–17245
https://doi.org/10.1021/ja407174u
40 Yang Q H, Li Z H, Zhang R K, Zhou L, Shao M F, Wei M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41: 408–416
https://doi.org/10.1016/j.nanoen.2017.09.049
41 Ning F Y, Shao M F, Zhang C L, Xu S M, Wei M, Duan X. Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy, 2014, 7: 134–142
https://doi.org/10.1016/j.nanoen.2014.05.002
42 Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
43 Li C M, Wei M, Evans D G, Duan X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small, 2014, 10(22): 4469–4486
https://doi.org/10.1002/smll.201401464
44 Gu Z, Atherton J J, Xu Z P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chemical Communications, 2015, 51(15): 3024–3036
https://doi.org/10.1039/C4CC07715F
45 He S, An Z, Wei M, Evans D G, Duan X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chemical Communications, 2013, 49(53): 5912–5920
https://doi.org/10.1039/c3cc42137f
46 Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Advanced Functional Materials, 2012, 22(4): 675–694
https://doi.org/10.1002/adfm.201102222
47 Tang C, Wang H F, Zhu X L, Li B Q, Zhang Q. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Particle & Particle Systems Characterization, 2016, 33(8): 473–486
https://doi.org/10.1002/ppsc.201600004
48 Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8(1): 23–39
https://doi.org/10.1007/s12274-014-0591-z
49 Ko J W, Ryu W H, Kim I D, Park C B. Bi-functional RuO2-Co3O4 core-shell nanofibers as a multi-component one-dimensional water oxidation catalyst. Chemical Communications, 2013, 49(84): 9725–9727
https://doi.org/10.1039/c3cc44564j
50 Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Core/shell photocatalyst with spatially separated Co-catalysts for efficient reduction and oxidation of water. Angewandte Chemie International Edition, 2013, 52(43): 11252–11256
https://doi.org/10.1002/anie.201303693
51 Hou C C, Wang C J, Chen Q Q, Lv X J, Fu W F, Chen Y. Rapid synthesis of ultralong Fe(OH)3:Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chemical Communications, 2016, 52(100): 14470–14473
https://doi.org/10.1039/C6CC08780A
52 Ge R X, Ma M, Ren X, Qu F L, Liu Z, Du G, Asiri A M, Chen L, Zheng B Z, Sun X P A. NiCo2O4@Ni-Co-Ci core-shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chemical Communications, 2017, 53(55): 7812–7815
https://doi.org/10.1039/C7CC03146G
53 Hu C L, Zhang L, Zhao Z J, Luo J, Shi J, Huang Z Q, Gong J L. Edge sites with unsaturated coordination on core-shell Mn3O4@MnxCo3−xO4 nanostructures for electrocatalytic water oxidation. Advanced Materials, 2017, 29(36): 1701820–1701827
https://doi.org/10.1002/adma.201701820
54 Jiang J, Wang M, Yan W S, Liu X F, Liu J X, Yang J L, Sun L C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38: 175–184
https://doi.org/10.1016/j.nanoen.2017.05.045
55 Li Z H, Shao M F, Yang Q H, Tang Y, Wei M, Evans D G, Duan X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37: 98–107
https://doi.org/10.1016/j.nanoen.2017.05.016
56 Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive AuPANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699
https://doi.org/10.1039/C7TA02660A
57 Bu L Z, Shao Q, Bin E, Guo J, Yao J L, Huang X Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. Journal of the American Chemical Society, 2017, 139(28): 9576–9582
https://doi.org/10.1021/jacs.7b03510
58 Li X L, Liu W, Zhang M Y, Zhong Y R, Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063
https://doi.org/10.1021/acs.nanolett.7b00126
59 Zhang N, Feng Y G, Zhu X, Guo S J, Guo J, Huang X Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Advanced Materials, 2017, 29(7): 1603774–1603781
https://doi.org/10.1002/adma.201603774
60 Sun X L, Li D G, Guo S J, Zhu W L, Sun S H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8(5): 2626–2631
https://doi.org/10.1039/C5NR06492A
61 Gawande M B, Goswami A, Asefa T, Guo H Z, Biradar A V, Peng D L, Zboril R, Varma R S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44(21): 7540–7590
https://doi.org/10.1039/C5CS00343A
62 Zheng F L, Wong W T, Yung K F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Research, 2014, 7(3): 410–417
https://doi.org/10.1007/s12274-014-0407-1
63 Lee J E, Chung K, Jang Y H, Jang Y J, Kochuveedu S T, Li D, Kim D H. Bimetallic multifunctional core@shell plasmonic nanoparticles for localized surface plasmon resonance based sensing and electrocatalysis. Analytical Chemistry, 2012, 84(15): 6494–6500
https://doi.org/10.1021/ac300654k
64 Li S Y, Qian T, Wu S S, Shen J. A facile, controllable fabrication of polystyrene/graphene core-shell microspheres and its application in high-performance electrocatalysis. Chemical Communications, 2012, 48(64): 7997–7999
https://doi.org/10.1039/c2cc34411d
65 Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291
https://doi.org/10.1002/adma.201602270
66 Carvalho D C, Ferreira N A, Filho J M, Ferreira O P, Soares J M, Oliveira A C. Ni-Fe and Co-Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250: 155–165
https://doi.org/10.1016/j.cattod.2014.08.010
67 Yan K, Lafleur T, Chai J, Jarvis C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution. Electrochemistry Communications, 2016, 62: 24–28
https://doi.org/10.1016/j.elecom.2015.11.004
68 Xia D C, Zhou L, Qiao S, Zhang Y L, Tang D, Liu J, Huang H, Liu Y, Kang Z H. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Materials Research Bulletin, 2016, 74: 441–446
https://doi.org/10.1016/j.materresbull.2015.11.007
69 Lu Z, Xu W W, Zhu W, Yang Q, Lei X D, Liu J F, Li Y P, Sun X M, Duan X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014, 50(49): 6479–6482
https://doi.org/10.1039/C4CC01625D
70 Liu X H, Ma R Z, Bando Y, Sasaki T. Layered cobalt hydroxide nanocones: Microwave-assisted synthesis, exfoliation, and structural modification. Angewandte Chemie International Edition, 2010, 49(44): 8253–8256
https://doi.org/10.1002/anie.201004033
71 Liu R, Wang Y Y, Liu D D, Zou Y Q, Wang S Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials, 2017, 29(30): 1701546–1701553
https://doi.org/10.1002/adma.201701546
72 Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2017, 56(21): 5867–5871
https://doi.org/10.1002/anie.201701477
73 Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 2014, 5: 4477–4486
https://doi.org/10.1038/ncomms5477
74 Liu Q Y, Wang H, Wang X N, Tong R, Zhou X L, Peng X N, Wang H B, Tao H L, Zhang Z H. Bifunctional Ni1−xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42(8): 5560–5568
https://doi.org/10.1016/j.ijhydene.2016.06.056
75 Xing J H, Li H, Cheng M M C, Geyer S M, Ng K Y S. Electro-synthesis of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13866–13873
https://doi.org/10.1039/C6TA05952J
76 Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698
https://doi.org/10.1002/anie.201511447
77 Qu Y D, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K Y, Shih Y C, Chang J W, et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials, 2016, 28(44): 9831–9838
https://doi.org/10.1002/adma.201602697
78 Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science, 2017, 10(8): 1820–1827
https://doi.org/10.1039/C7EE01571B
79 Yu L, Zhou H Q, Sun J Y, Qin F, Luo D, Xie L X, Yu F, Bao J M, Li Y, Yu Y, et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41: 327–336
https://doi.org/10.1016/j.nanoen.2017.09.045
80 Guan C, Zeng Z Y, Li X L, Cao X H, Fan Y, Xia X H, Pan G X, Zhang H, Fan H J. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. Small, 2014, 10(2): 300–307
https://doi.org/10.1002/smll.201301009
81 Xia X H, Zhang Y Q, Chao D L, Guan C, Zhang Y J, Li L, Ge X, Bacho I M, Tu J P, Fan H J. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6(10): 5008–5048
https://doi.org/10.1039/C4NR00024B
82 Mai Y Y, Zhang F, Feng X L. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014, 6(1): 106–121
https://doi.org/10.1039/C3NR04791A
83 Shen L F, Ding B, Nie P, Cao G Z, Zhang X G. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Advanced Energy Materials, 2013, 3(11): 1484–1489
https://doi.org/10.1002/aenm.201300456
84 Benehkohal N P, Demopoulos G P. Electrophoretically self-assembled mixed metal oxide-TiO2 nano-composite film structures for photoelectrochemical energy conversion: Probing of charge recombination and electron transport resistances. Journal of Power Sources, 2013, 240: 667–675
https://doi.org/10.1016/j.jpowsour.2013.04.065
85 Shao M F, Ning F Y, Zhao Y F, Zhao J W, Wei M, Evans D G, Duan X. Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chemistry of Materials, 2012, 24(6): 1192–1197
https://doi.org/10.1021/cm203831p
86 Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. Journal of the American Chemical Society, 2012, 134(2): 1071–1077
https://doi.org/10.1021/ja2086323
87 Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Han J B, Wei M, Evans D G, Duan X. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy, 2016, 20: 294–304
https://doi.org/10.1016/j.nanoen.2015.12.030
88 Wang Z Q, Zeng S, Liu W H, Wang X W, Li Q W, Zhao Z G, Geng F X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(2): 1488–1495
https://doi.org/10.1021/acsami.6b13075
89 Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 2016, 26(20): 3515–3523
https://doi.org/10.1002/adfm.201505302
90 Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127
https://doi.org/10.1016/j.electacta.2017.10.074
91 Tang K, Wang X F, Wang M F, Xie Y M, Zhou J Q, Yan C L. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation. Chemelectrochem, 2017, 4(9): 2150–2157
https://doi.org/10.1002/celc.201700439
92 Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 51–60
https://doi.org/10.1016/j.electacta.2017.05.120
93 Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127
https://doi.org/10.1016/j.electacta.2017.10.074
94 Zhao X, Shang X, Quan Y, Dong B, Han G Q, Li X, Liu Y R, Chen Q, Chai Y M, Liu C G. Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media. Electrochimica Acta, 2017, 230: 151–159
https://doi.org/10.1016/j.electacta.2017.01.178
95 Zhao C, Wu J, Yang L, Fan G L, Li F. In situ growth route to fabricate ternary Co-Ni-Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol. Industrial & Engineering Chemistry Research, 2017, 56(15): 4237–4244
https://doi.org/10.1021/acs.iecr.6b04859
96 Liu K L, Wang F M, Shifa T A, Wang Z X, Xu K, Zhang Y, Cheng Z Z, Zhan X Y, He J. An efficient ternary CoP2xSe2(1−x) nanowire array for overall water splitting. Nanoscale, 2017, 9(11): 3995–4001
https://doi.org/10.1039/C7NR00460E
97 Dinh K N, Zheng P L, Dai Z F, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(8): 1703257–1703265
https://doi.org/10.1002/smll.201703257
98 Liu Y X, Bai Y, Han Y, Yu Z, Zhang S M, Wang G H, Wei J H, Wu Q B, Sun K N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Applied Materials & Interfaces, 2017, 9(42): 36917–36926
https://doi.org/10.1021/acsami.7b12474
99 Yang Q, Li T, Lu Z Y, Sun X M, Liu J F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale, 2014, 6(20): 11789–11794
https://doi.org/10.1039/C4NR03371J
100 Liu W, Liu H, Dang L N, Zhang H X, Wu X L, Yang B, Li Z J, Zhang X W, Lei L C, Jin S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Advanced Functional Materials, 2017, 27(14): 1603904–1603911
https://doi.org/10.1002/adfm.201603904
101 Kment S, Riboni F, Pausova S, Wang L, Wang L Y, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46(12): 3716–3769
https://doi.org/10.1039/C6CS00015K
102 Chong R F, Wang B Y, Su C H, Li D L, Mao L Q, Chang Z X, Zhang L. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8583–8590
https://doi.org/10.1039/C7TA01586K
103 Chen W J, Wang T T, Xue J W, Li S K, Wang Z D, Sun S. Cobalt-nickel layered double hydroxides modified on TiO2 nanotube arrays for highly efficient and stable PEC water splitting. Small, 2017, 13(10): 1602420–1602428
https://doi.org/10.1002/smll.201602420
104 Zhang R K, Shao M F, Xu S M, Ning F Y, Zhou L, Wei M. Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy, 2017, 33: 21–28
https://doi.org/10.1016/j.nanoen.2017.01.020
105 Ning F Y, Shao M F, Xu S M, Fu Y, Zhang R K, Wei M, Evans D G, Duan X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 2016, 9(8): 2633–2643
https://doi.org/10.1039/C6EE01092J
106 He W H, Wang R R, Zhang L, Zhu J, Xiang X, Li F. Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(35): 17977–17982
https://doi.org/10.1039/C5TA04105H
107 Tang Y Q, Wang R R, Yang Y, Yan D P, Xiang X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Applied Materials & Interfaces, 2016, 8(30): 19446–19455
https://doi.org/10.1021/acsami.6b04937
108 Luo P, Zhang H J, Liu L, Zhang Y, Deng J, Xu C H, Hu N, Wang Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Applied Materials & Interfaces, 2017, 9(3): 2500–2508
https://doi.org/10.1021/acsami.6b13984
109 Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097
https://doi.org/10.1021/acscatal.6b02479
110 Yang Y Q, Zhang K, Ling H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366
https://doi.org/10.1021/acscatal.6b03192
111 Liu Y P, Li Q J, Si R, Li G D, Li W, Liu D P, Wang D J, Sun L, Zhang Y, Zou X X. Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Advanced Materials, 2017, 29(13): 1606200–1606207
https://doi.org/10.1002/adma.201606200
112 Wang J, Xu F, Jin H Y, Chen Y Q, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Advanced Materials, 2017, 29(14): 1605838–1605845
https://doi.org/10.1002/adma.201605838
113 Wu Y Y, Liu Y P, Li G D, Zou X, Lian X R, Wang D J, Sun L, Asefa T, Zou X X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35: 161–170
https://doi.org/10.1016/j.nanoen.2017.03.024
114 Zhao J H, Cai L L, Li H, Shi X J, Zheng X L. Stabilizing silicon photocathodes by solution deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Letters, 2017, 2(9): 1939–1946
https://doi.org/10.1021/acsenergylett.7b00597
115 Yoon T, Kim K S. One-step synthesis of CoS-doped beta-Co(OH)2@amorphous MoS2+x hybrid catalyst grown on nickel foam for high-performance electrochemical overall water splitting. Advanced Functional Materials, 2016, 26(41): 7386–7393
https://doi.org/10.1002/adfm.201602236
116 Yao L H, Wei D, Yan D P, Hu C W. ZnCr layered double hydroxide (LDH) nanosheets assisted formation of hierarchical flower-like CdZnS@LDH microstructures with improved visible-light-driven H2 production. Chemistry, an Asian Journal, 2015, 10(3): 630–636
https://doi.org/10.1002/asia.201403387
117 Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(31): 11973–12000
https://doi.org/10.1039/C6TA02334G
118 Zhang G H, Lin B Z, Yang W W, Jiang S F, Yao Q R, Chen Y L, Gao B F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Advances, 2015, 5(8): 5823–5829
https://doi.org/10.1039/C4RA11757C
119 Zhang G H, Lin B Z, Qiu Y Q, He L W, Chen Y L, Gao B F. Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets. International Journal of Hydrogen Energy, 2015, 40(14): 4758–4765
https://doi.org/10.1016/j.ijhydene.2015.02.055
120 Liu J, Wang J S, Zhang B, Ruan Y J, Lv L, Ji X, Xu K, Miao L, Jiang J J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(18): 15364–15372
https://doi.org/10.1021/acsami.7b00019
121 Zou X, Liu Y P, Li G D, Wu Y Y, Liu D P, Li W, Li H W, Wang D J, Zhang Y, Zou X X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Advanced Materials, 2017, 29(22): 1700404–1700411
https://doi.org/10.1002/adma.201700404
122 Dutta S, Indra A, Feng Y, Song T, Paik U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Applied Materials & Interfaces, 2017, 9(39): 33766–33774
https://doi.org/10.1021/acsami.7b07984
123 Xia C, Jiang Q, Zhao C, Hedhili M N, Alshareef H N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, 2016, 28(1): 77–85
https://doi.org/10.1002/adma.201503906
124 Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529(7584): 68–71
https://doi.org/10.1038/nature16455
125 Liu C, Colon B C, Ziesack M, Silver P A, Nocera D G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352(6290): 1210–1213
https://doi.org/10.1126/science.aaf5039
126 Dinca M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341
https://doi.org/10.1073/pnas.1001859107
127 Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674
https://doi.org/10.1021/ja3126432
128 Yang L, Xie L S, Ge R X, Kong R M, Liu Z A, Du G, Asiri A M, Yao Y D, Luo Y L. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9(23): 19502–19506
https://doi.org/10.1021/acsami.7b01637
129 You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531
https://doi.org/10.1021/acssuschemeng.7b03780
130 Farzaneh A, Saghatoleslami N, Goharshadi E K, Gharibi H, Ahmadzadeh H. 3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: Role of p and lone pair electrons. Electrochimica Acta, 2016, 222: 608–618
https://doi.org/10.1016/j.electacta.2016.11.015
131 Kumar M P, Raju M M, Arunchander A, Selvaraj S, Kalita G, Narayanan T N, Sahu A K, Pattanayak D K. Nitrogen doped graphene as metal free electrocatalyst for efficient oxygen reduction reaction in alkaline media and its application in anion exchange membrane fuel cells. Journal of the Electrochemical Society, 2016, 163(8): F848–F855
https://doi.org/10.1149/2.0541608jes
132 Lu Z J, Bao S J, Gou Y T, Cai C J, Ji C C, Xu M W, Song J, Wang R Y. Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Advances, 2013, 3(12): 3990–3995
https://doi.org/10.1039/c3ra22161j
133 Qu L T, Liu Y, Baek J B, Dai L M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326
https://doi.org/10.1021/nn901850u
134 Li J Y, Ren Z Y, Zhou Y X, Wu X J, Xu X L, Qi M, Li W L, Bai J T, Wang L. Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon, 2013, 62: 330–336
https://doi.org/10.1016/j.carbon.2013.05.070
135 Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758
https://doi.org/10.1021/nl803279t
136 Zhang F, Zhang T F, Yang X, Zhang L, Leng K, Huang Y, Chen Y S. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013, 6(5): 1623–1632
https://doi.org/10.1039/c3ee40509e
137 Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 2009, 113(30): 13103–13107
https://doi.org/10.1021/jp902214f
138 Fu K, Wang Y B, Yan C Y, Yao Y G, Chen Y A, Dai J Q, Lacey S, Wang Y B, Wan J Y, Li T, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 2016, 28(13): 2587–2594
https://doi.org/10.1002/adma.201505391
139 Hou Y, Wen Z H, Cui S M, Ci S Q, Mao S, Chen J H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Advanced Functional Materials, 2015, 25(6): 872–882
https://doi.org/10.1002/adfm.201403657
140 Zhao J W, Chen J, Xu S M, Shao M F, Zhang Q, Wei F, Ma J, Wei M, Evans D G, Duan X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Advanced Functional Materials, 2014, 24(20): 2938–2946
https://doi.org/10.1002/adfm.201303638
141 Ping J F, Wang Y X, Lu Q P, Chen B, Chen J Z, Huang Y, Ma Q L, Tan C L, Yang J, Cao X H, et al.Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Advanced Materials, 2016, 28(35): 7640–7645
https://doi.org/10.1002/adma.201601019
142 Cao Y, Li G T, Li X B. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chemical Engineering Journal, 2016, 292: 207–223
https://doi.org/10.1016/j.cej.2016.01.114
143 Yu X W, Zhang M, Yuan W J, Shi G Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6921–6928
https://doi.org/10.1039/C5TA01034A
144 Bai X, Liu Q, Lu Z T, Liu J Y, Chen R R, Li R M, Song D L, Jing X Y, Liu P L, Wang J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal-organic framework for sustainable energy storage. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9923–9934
https://doi.org/10.1021/acssuschemeng.7b01879
145 Ni Y M, Yao L H, Wang Y, Liu B, Cao M H, Hu C W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale, 2017, 9(32): 11596–11604
https://doi.org/10.1039/C7NR03661B
146 Nadeema A, Dhavale V M, Kurungot S. NiZn double hydroxide nanosheet-anchored nitrogen-doped graphene enriched with the γ-NiOOH phase as an activity modulated water oxidation electrocatalyst. Nanoscale, 2017, 9(34): 12590–12600
https://doi.org/10.1039/C7NR02225E
147 Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 59–68
https://doi.org/10.1016/j.electacta.2017.05.120
148 Jia Y, Zhang L Z, Gao G P, Chen H, Wang B, Zhou J Z, Soo M T, Hong M, Yan X C, Qian G R, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Advanced Materials, 2017, 29(17): 1700017–1700024
https://doi.org/10.1002/adma.201700017
149 Zhan T R, Zhang Y M, Liu X L, Lu S S, Hou W G. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Journal of Power Sources, 2016, 333: 53–60
https://doi.org/10.1016/j.jpowsour.2016.09.152
150 Li X M, Zai J T, Liu Y Y, He X B, Xiang S J, Ma Z F, Qian X F. Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. Journal of Power Sources, 2016, 325: 675–681
https://doi.org/10.1016/j.jpowsour.2016.06.090
151 Chen R, Sun G Z, Yang C J, Zhang L P, Miao J W, Tao H B, Yang H B, Chen J Z, Chen P, Liu B. Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1(2): 156–160
https://doi.org/10.1039/C5NH00082C
152 Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: A synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951
https://doi.org/10.1021/acsami.5b10634
153 Hou Y, Lohe M R, Zhang J, Liu S H, Zhuang X D, Feng X L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy & Environmental Science, 2016, 9(2): 478–483
https://doi.org/10.1039/C5EE03440J
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed