Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 564-576    https://doi.org/10.1007/s11705-018-1720-0
REVIEW ARTICLE
Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review
Wenjin Ding1(), Alexander Bonk1, Thomas Bauer2
1. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany
2. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 51147 Cologne, Germany
 Download: PDF(457 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

Keywords corrosion mechanisms      impurities      metallic corrosion      salt purification      electrochemical techniques     
Corresponding Author(s): Wenjin Ding   
Just Accepted Date: 05 March 2018   Online First Date: 07 June 2018    Issue Date: 18 September 2018
 Cite this article:   
Wenjin Ding,Alexander Bonk,Thomas Bauer. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Front. Chem. Sci. Eng., 2018, 12(3): 564-576.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1720-0
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/564
Fig.1  Concentrated solar power plants with molten salts as TES and HTF materials (source: US Department of Energy)
Fig.2  110-MWe Crescent Dunes tower CSP plant in Tonopah, Nevada, USA, with 10 h of thermal storage in ~32000 tons solar salt (source: SolarReserve)
Fig.3  A molten salt storage tank (container) for the Crescent Dunes solar power plant. Size of tank: 12.2 m tall and 42.7 m in diameter; storage capacity: 32000 tons molten salt (source: SolarReserve)
Molten salts composition/wt-% Melting point /°C Stability limit /°C Density /(g?cm−3) Heat capacity /(kJ?kg−1?K−1) Material cost /(US $?kg−1)
Solar salt
KNO3/nANO3
(40/60)
240 [8] 530–565 [8] ~1.8 [8] (400 °C) ~1.5 [8] (400 °C) 0.8 [4], 0.5 [7]
Hitec
KNO3/NaNO3/NaNO2 (53/7/40)
142 [8] 450–540 [8] ~1.8 [8] (400 °C) 1.5 [8] (400 °C) 0.9 [7]
LiNaK carbonates
K2CO3/ Li2CO3/Na2CO3
(32/35/33)
397 [8] >650 [8] 2.0 [8] (700 °C) 1.9 [8] (700 °C) 2.5 [4], ~1.3 [7]
LiNaK fluorides
KF/LiF/NaF
(59/29/12)
454 [8] >700 [8] 2.0 [8] (700 °C) 1.9 [8] (700 °C) >2*
ZnNaK chlorides
KCl/NaCl/ZnCl2
(23.9/7.5/68.6)
204 [7] 850 [7] ~2.0 [9] (600 °C) 0.8 [7] (300–600 °C) 0.8 [4],<1 [7]
MgNaK chlorides
KCl/MgCl2/NaCl
(17.8/68.2/14.0)
380 [10] >800 [4] ~1.7 [9] (600 °C) ~1.0 [9] (500–800 °C) <0.35 [4]
Tab.1  Properties and prices of commonly used molten salts as TES/HTF in CSP
Fig.4  High temperature molten salt loop schematic with potential surface and fluid temperatures [4]. Adapted from Concentrating Solar Power Gen3 Demonstration Roadmap of NREL, USA
Gases O2 H2O HCl Cl2 CO2 H2
Henry’s law constant /(1012 mol·cm−3·Pa−1) ~10−3
(chlorides) [12]
0.95 (NaCl, 900 °C) [16]
1.1 (KCl, 900 °C) [16]
0.13 (NaCl, 907 °C) [16]
0.25 (KCl, 907 °C) [16]
8.4 × 10−2(MgCl2, 904 °C) [16]
0.2(MgCl2/KCl, 50/50 mol-%, 875 °C) [16]
5.4 × 10−2 (NaCl, 900 °C) [16]
0.19(KCl, 900 °C) [16]
7.3 × 10−2(MgCl2, 925 °C) [16]
3.4 × 10−2(MgCl2/NaCl/KCl, 50/27.7/23.3 wt-%, 903 °C) [16]
6.19 × 10−2 (NaCl, 904 °C) [16]
7.9 × 10−2(KCl, 903 °C) [16]
0.36(MgCl2, 850 °C) [16]
4.3 × 10−3 (LiF-BeF2, 66–34 mol-%, 600 °C) [16]
Interaction Yes [12,17]Chlorination4Cl(l) + O2(l,g) → 2Cl2(l,g) + 2O2–(l) Yes [11,18]HydrolysisH2O(l,g) + Cl(l) → HCl(l,g) + OH(l)
Tab.2  Gas solubilities in molten halides and gas interaction with pure molten chlorides.
Fig.5  Vapor pressure of H2O and HCl over the hydrates of MgCl2 [19]
Fig.6  Cyclic voltammogram in MgCl2/KCl/NaCl at 500 °C obtained by a tungsten working electrode. Sweep rate: 200 mV·s−1. Tungsten reference electrode. ip(B): peak current density for reaction B. Adopted from [24]
Fig.7  Peak current densities vs. concentrations of corrosive MgOH+ in molten MgCl2/KCl/NaCl (60/20/20 mol-%) at (a) 500, 600 °C and (b) 700 °C. Error bars represent the standard deviations in the CV (three measurements) and AC measurements (three measurements). Adopted from [24]
Molten salts /wt-% Alloy /Ni wt-% T /°C Atmosphere Method Corrosion rate /(µm?year−1) Ref.
KCl/NaCl/ZnCl2 (24.0/7.4/68.6) Ha N (~71) 250 Air PDP 37 [30]
500 Air PDP 160 [30]
Ha C-22 (~56) 250 Air PDP 16 [30]
500 Air PDP 50 [30]
Ha C-276 (~57) 250 Air PDP 11 [30]
500 Air PDP 42 [30]
SS 304 (8–11) 250 Air PDP 22 [31]
500 Air PDP 381 [31]
400 Absence of air I+M (1000 h) 14 [31]
Ha C-22 (~56) 250 Air PDP 15 [31]
500 Air PDP 42 [31]
400 Absence of air I+M (1000 h) 8 [31]
800 Absence of air I+M (1000 h) 14 [31]
Ha C-276 (~57) 500 Air PDP 40 [31]
800 Air PDP 500 [31]
400 Absence of air I+M (1000 h) 3 [31]
800 Absence of air I+M (1000 h) 4 [31]
500 Air I+M (1000 h) 80 [31]
CaCl2/MgCl2/NaCl
(43.6/17.7/38.7)
Inc 625 (~62) 600 Air I+M (504 h) 121 [29]
Ha X (~47) 600 Air I+M (504 h) 153 [29]
Ha B-3 (~65) 600 Air I+M (504 h) 144 [29]
KCl/MgCl2/NaCl
(20.4/55.1/24.5)
SS 304 (8–11) 450–500 Vacuum I+M (1000 h) <10 [14]
SS 316 (10–14) 450–500 Vacuum I+M (1000 h) ~10 [14]
SS 347 (9–12) 450–500 Vacuum I+M (1000 h) ~120 [14]
Ha N (~71) 450–500 Vacuum I+M (1000 h) ~50 [14]
SS 304 (8–11) 900 N2-(0.1–1%H2O)-(1–10%O2) I+M (144 h) Disintegrated [14]
SS 316 (10–14) 900 N2-(0.1–1%H2O)-(1–10%O2) I+M (144 h) Disintegrated [14]
In 800H (30–35) 900 N2-(0.1–1%H2O)-(1–10%O2) I+M (144 h) 23725 [14]
Ha 230 (~57) 900 N2-(0.1–1%H2O)-(1–10%O2) I+M (144 h) 20345 [14]
KCl/NaCl/VCl2
(53.3/41.7/5.0)
SS 316L (13.5–15.0) 750 Argon I+M (6 h) 54000 [34]
750 Argon PDP (6 h) 1600 [34]
SS 316Ti (12–14) 750 Argon I+M (6 h) 61000 [34]
750 Argon PDP (6 h) 7000 [34]
SS 321 (9–11) 750 Argon I+M (6 h) 22200 [34]
750 Argon PDP (6 h) 15100 [34]
KCl/NaCl
(56.1/43.9)
SS 316L (13.5–15.0) 750 Argon I+M (80 h) ~157 [35]
SS 316Ti (12–14) 750 Argon I+M (80 h) ~168 [35]
SS 321 (9–11) 750 Argon I+M (80 h) ~225 [35]
KCl/LiCl
(55.8/44.2)
SS 304 (8–11) 400 Absence of air I+M (–) 2 [14]
500 Absence of air I+M (–) 6 [14]
SS 316 (10–14) 400 Absence of air I+M (–) 2 [14]
SS 347 (9–12) 500 Absence of air I+M (–) 2 [14]
LiCl/NaCl
(68.6/34.4)
SS 347 (9–12) 650 Nitrogen PDP 7490 [32]
SS 310 (~20.5) 650 Nitrogen PDP 6420 [32]
700 Nitrogen PDP 12450 [32]
In 800H (30–35) 650 Nitrogen PDP 5940 [32]
700 Nitrogen PDP 14310 [32]
Inc 625 (~62) 650 Nitrogen PDP 2800 [32]
MgCl2/NaCl
(52/48)
Ni (>99.97) 520 Air I+M (140 h) 57 [33]
GH 4033 (Ni72.1/Cr20.5/Fe4.0/Ti2.6/Al0.8) 520 Air I+M (140 h) 142 [33]
GH 4169 (Ni52.9/Cr19.0/Fe18.5/Ti0.9/Al0.84/Mo3.1/Nb5.2) 520 Air I+M (140 h) 246 [33]
Tab.3  Results of corrosion studies metallic alloys in molten chloridesa)
Fig.8  Interaction between molten chlorides with corrosive impurities and metallic alloys
Molten chlorides /wt-% Alloys Atmosphere temperature /°C Procedures Corrosion mechanism Ref.
CaCl2/MgCl2/NaCl
(43.6/17.7/38.7)
Ni-based commercial superalloys Air /600 SEM, EDS, XRD, TC Preferential depletion of Cr and Fe,
intergranular corrosion
[29]
MgCl2/NaCl
(52/48)
Ni-based alloys (Ni 52.9–99.97 wt-%) Air /520 SEM, EDS, XRD Combined effect of alloy dissolved as anode, preferential oxidization and chlorination [33]
KCl/NaCl
(56.1/43.9)
Stainless steels Argon /750 EAS, XRM, SEM, OCP, LV, EIS Intergranular corrosion,
preferential depletion of Cr, Fe and Mn
[35]
KCl-ZnCl2
(69.1/30.9)
NiAl and FeAl model alloys Air /400–450 SEM, EDX, XRD, EPMA Preferential depletion of Al,
formation of Al2O3 within the pores of corrosion layer
[17]
MgCl2/NaCl
(MgCl2 wt-% 0.0, 48.9, 61.0, 93.6)
GH 1140
(Ni37.5/Cr21.5/Fe35.85/Ti0.9/Al0.4/Mo2.25/W1.6)
Air /850 SEM, EDS, XRD Without MgCl2:
dissolution as anode–oxidizing–peeling off of oxide film,
with MgCl2: dissolution as anode–oxidation–reduction–peeling off of oxide film
[37]
Tab.4  Corrosion of metallic alloys in molten chloridesa)
Elements Al Mn Cr Fe Ni
E0m /V vs. Pt2+/Pt −1.886 (Al3+/Al) −1.794 (Mn2+/Mn) −1.396 (Cr2+/Cr)
−1.131 (Cr3+/Cr)
−1.183 (Fe2+/Fe)
−0.852 (Fe3+/Fe)
−0.792 (Ni2+/Ni)
Tab.5  Standard electrode potentials of metallic elements in molten MgCl2/KCl/NaCl (50/20/30 mol-%) at 475 °C [39]
1 Minh N Q. Extraction of metals by molten salt electrolysis: Chemical fundamentals and design factors. Journal of Metals, 1985, 37(1): 28–33
2 Fray D J. Emerging molten salt technologies for metals production. Journal of the Minerals Metals & Materials Society, 2001, 53(10): 26–31
https://doi.org/10.1007/s11837-001-0052-5
3 Wulandari W, Brooks G A, Rhamdhani M A, Monaghan B J. Magnesium: Current and alternative production routes. In: Proceedings of Chemeca 2010: Engineering at the Edge. Barton: Engineers Australia, 2010, 347–357
4 Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, Kolb W, Andraka C, Kruizenga A. Concentrating Solar Power Gen3 Demonstration Roadmap. National Renewable Energy Laboratory Technical Report NREL/TP-5500-67464. 2017
5 Kuravi S, Trahan J, Goswami D Y, Rahman M M, Stefanakos E K. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013, 39(4): 285–319
https://doi.org/10.1016/j.pecs.2013.02.001
6 Zervos A, ed. Renewables 2016: Global Status Report, 2016. Paris: REN21 Secretariat, 2016, 67–69
7 Vignarooban K, Xu X, Arvay A, Kannan H K. Heat transfer fluids for concentrating solar power systems—a review. Applied Energy, 2015, 146: 383–396
https://doi.org/10.1016/j.apenergy.2015.01.125
8 Lantelme F, Groult H, eds. Molten Salts Chemistry: From Lab to Applications. Amsterdam: Elsevier, 2013, 415–438
9 Li Y, Xu X, Wang X, Li P, Hao Q, Xiao B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Solar Energy, 2017, 152: 57–79
https://doi.org/10.1016/j.solener.2017.03.019
10 Tian Y, Zhao C Y. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013, 104: 538–553
https://doi.org/10.1016/j.apenergy.2012.11.051
11 Kruizenga A M. Corrosion Mechanisms in Chloride and Carbonate Salts. SANDIA Report SAND2012-7594. 2012
12 Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes. Metal Science and Heat Treatment, 1985, 27(3): 184–188
https://doi.org/10.1007/BF00699649
13 Sequeira C A C. High temperature corrosion in molten salts. Molten Salt Forum, 2003, 7, 117–170
14 Lai G Y, ed. High-Temperature Corrosion and Materials Applications. Ohio: ASM International, 2007, 409–421
15 Patel N S, Pavik V, Boca M. High-temperature corrosion behavior of superalloys in molten salts—a review. Critical Reviews in Solid State and Material Sciences, 2017, 42(1): 83–97
https://doi.org/10.1080/10408436.2016.1243090
16 Tomkins R P T, Bansal N P. Gases in molten salts, a volume in IUPAC solubility data series. Oxford: Pergamon Press, 1991, Volume 45/46, 61, 114–176, 220–245, 325–339, 353–357
17 Li Y S, Spiegel M. Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2-KCl melt at 400–450 °C. Corrosion Science, 2004, 46(8): 2009–2023
https://doi.org/10.1016/j.corsci.2003.10.019
18 Maksoud L, Bauer T. Experimental investigation of chloride molten salts for thermal energy storage applications. In: Proceedings of 10th International Conference on Molten Salt Chemistry and Technology, Shenyang, China, 2015, 273–280
19 Kipouros G J, Sadoway D R. A thermochemical analysis of the production of anhydrous MgCl2. Journal of Light Metals, 2001, 1(2): 111–117
https://doi.org/10.1016/S1471-5317(01)00004-9
20 Maricle D L, Hume D N. A new method for preparing hydroxide—free alkali chloride melts. Journal of the Electrochemical Society, 1960, 107(4): 354–356
https://doi.org/10.1149/1.2427694
21 Skar R A. Chemical and electrochemical characterisation of oxide/hydroxide impurities in the electrolyte for magnesium production. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology (NTNU), 2001, 26
22 Gussone J. Schmelzflusselektroytische Abscheidung von Titan auf Vertärkungsfasern zur Herstellung von Titanmatrixverbundwerkstoffen. Dissertation for the Doctoral Degree. Aachen: RWTH Aachen University, 2012, 56–80 (in German)
23 Ding W, Bonk A, Gussone J, Bauer T. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. Journal of Energy Storage, 2018, 15: 408–414
https://doi.org/10.1016/j.est.2017.12.007
24 Ding W, Bonk A, Gussone J, Bauer T. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage. Energy Procedia, 2017, 135: 82–91
https://doi.org/10.1016/j.egypro.2017.09.489
25 Ding W, Bonk A, Gussone J, Bauer T. Electrochemical method for monitoring corrosive impurities in molten MgCl2/KCl/NaCl salts for thermal energy storage. In: Proceedings of 11th International Renewable Energy Storage Conference (IRES 2017), Düsseldorf Germany, 2017, Paper-Nr: IRES2017-141
26 Gaune-Escard M, ed. Molten Salts: From Fundamentals To Applications. NATO Science Series (Series II: Mathematics, Physics, and Chemistry), volume 52. Dordrecht: Springer, 2002, 283–285
27 Mohamedi M, Borresen B, Haarberg G M, Tunold R. Anodic behavior of carbon electrodes in CaO-CaCl2 melts at 1123 K. Journal of the Electrochemical Society, 1999, 146(4): 1472–1477
https://doi.org/10.1149/1.1391789
28 Brookes H C. Voltammetric investigations of CaCI2:KCI melts at 700 °C. Journal of the Electrochemical Society, 1988, 135(2): 373–377
https://doi.org/10.1149/1.2095618
29 Liu B, Wei X, Wang W, Lu J, Ding J. Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power. Solar Energy Materials and Solar Cells, 2017, 170: 77–86
https://doi.org/10.1016/j.solmat.2017.05.050
30 Vignarooban K, Pugazhendhi P, Tucker C, Gervasio D, Kannan A M. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Solar Energy, 2014, 103: 62–69
https://doi.org/10.1016/j.solener.2014.02.002
31 Vignarooban K, Xu X, Wang K, Molina E E, Li P, Gervasio D, Kannan A M. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Applied Energy, 2015, 159: 206–213
https://doi.org/10.1016/j.apenergy.2015.08.131
32 Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Solar Energy Materials and Solar Cells, 2016, 157: 234–244
https://doi.org/10.1016/j.solmat.2016.05.052
33 Wang J W, Zhang C Z, Li Z H, Zhou H X, He J X, Yu J C. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere. Solar Energy Materials and Solar Cells, 2017, 164: 146–155
https://doi.org/10.1016/j.solmat.2017.02.020
34 Abramov A V, Polovov I B, Volkvich V A, Rebrin O I, Denisov E I, Griffiths T R. Corrosion of austenitic steels and their components in vanadium-containing chloride melts. ECS Transactions, 2012, 50(11): 685–698
https://doi.org/10.1149/05011.0685ecst
35 Gaune-Escard M, Haarberg G M, eds. Molten Salts Chemistry and Technology. Chichester: John Wiley & Sons, Ltd., 2014, 427–448
36 Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. II: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233
https://doi.org/10.1016/j.solmat.2017.02.019
37 Wang J W, Zhou H X, Zhang C Z, Liu W N, Zhao B Y. Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium. Solar Energy Materials and Solar Cells, 2018, 179: 194–201
https://doi.org/10.1016/j.solmat.2017.11.014
38 Hamer W J, Malmberg M S, Rubin B. Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte. Journal of the Electrochemical Society, 1956, 103(1): 8–16
https://doi.org/10.1149/1.2430236
39 Plambeck J A. Electromotive force series in molten salts. Journal of Chemical & Engineering Data, 1967, 12(1): 77–82
https://doi.org/10.1021/je60032a023
40 Indacochea J E, Smith J L, Litko K R, Karell E J, Rarez A G. High-temperature oxidation and corrosion of structural materials in molten chlorides. Oxidation of Metals, 2001, 55(1-2): 1–16
https://doi.org/10.1023/A:1010333407304
41 Indacochea J E, Smith J L, Litko K R, Karell E J. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. Journal of Materials Research, 1999, 14(5): 1990–1995
https://doi.org/10.1557/JMR.1999.0268
42 Garcia-Diaz B L, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J. High temperature electrochemical engineering and clean energy systems. Journal of the South Carolina Academy of Science, 2016, 14(1): 11–14
43 Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233
https://doi.org/10.1016/j.solmat.2017.02.019
44 Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. Nature Partner Journal Materials Degradation, 2017, 7: 1–9
45 Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings. International Journal of Hydrogen Energy, 2016, 41(19): 8394–8400
https://doi.org/10.1016/j.ijhydene.2015.10.092
[1] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed