Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 473-480    https://doi.org/10.1007/s11705-018-1724-9
COMMUNICATION
Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution
Shenghua Ye, Gaoren Li()
MOE Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of ~186 mV at 10.0 mA·cm2 and a small tafel slope of 88.6 mV·deg1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.

Keywords NiCo alloy      polypyrrole      hybrid nanotube      electrocatalyst      hydrogen evolution reaction     
Corresponding Author(s): Gaoren Li   
Just Accepted Date: 15 March 2018   Online First Date: 07 June 2018    Issue Date: 18 September 2018
 Cite this article:   
Shenghua Ye,Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1724-9
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/473
Fig.1  Schema1 Schematic illustration of the fabrication process of the PPy@NiCo HNTAs
Fig.2  (a) SEM and (b-c) TEM images of PPy@NiCo HNTAs; (d) TEM image of nanotube wall and (e) the corresponding element mapping of the wall of PPy@NiCo HNTAs; (f) HRTEM and (g) SAED pattern of NiCo layer in PPy@NiCo HNTAs marked with red circle in (d)
Fig.3  (a–c) XPS spectra of Ni 2p, Co 2p and N 1s in the Ni NTAs, NiCo NTAs, and PPy@NiCo HNTAs, respectively; (d) Raman spectra of PPy NTAs and PPy@NiCo HNTAs
Fig.4  (a) LSV curves and (b) Tafel plots of PPy@NiCo HNTAs and NiCo NTAs at scan rate of 2 mV?s1 in 1.0 mol?L1 NaOH solution; (c) cyclic voltammetric sweeps of PPy@NiCo HNTAs and NiCo NTAs at scan rate of 50 mV?s1 in 1.0 mol?L1 NaOH solution; (d) Arrhenius plots of the PPy@NiCo HNTAs and NiCo NTAs
Fig.5  (a) CVs of PPy@NiCo HNTAs and NiCo NTAs in 0.5 mol?L1 NaOH at the scan rate of 50 mV?s1; (b) TOFs calculated for PPy@NiCo HNTAs and NiCo NTAs in 1.0 mol?L1 NaOH
1 Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, Guo W, Yang S. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37): 11900–11903
https://doi.org/10.1021/jacs.5b07728
2 Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultratin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863
https://doi.org/10.1002/anie.201402315
3 Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7589
https://doi.org/10.1021/ja503372r
4 Liu Q, Xie L S, Liu Z A, Du G, Asiri A M, Sun X P. A Zn-doped Ni3S2 nanosheet array as a high-perpformance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53(92): 12446–12449
https://doi.org/10.1039/C7CC06668F
5 Xie M W, Xiong X L, Yang L, Shi X F, Asiri A M, Sun X P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54(18): 2300–2303
https://doi.org/10.1039/C7CC09105B
6 You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531
https://doi.org/10.1021/acssuschemeng.7b03780
7 Xiong X L, Ji Y Y, Xie M W, You C, Yang L, Liu Z A, Asiri A M, Sun X P. MnO2-CoP3 nanowire array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86: 161–165
https://doi.org/10.1016/j.elecom.2017.12.008
8 Xie F Y, Wu H L, Mou J R, Lin D M, Xu C G, Wu C, Sun X P. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
https://doi.org/10.1016/j.jcat.2017.10.013
9 Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(21): 6325–6329
https://doi.org/10.1002/anie.201501419
10 Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 124(51): 12875–12878
https://doi.org/10.1002/ange.201207111
11 Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982
https://doi.org/10.1038/ncomms6982
12 Morales-Guio C G, Liardet L, Mayer M T, Tilley S D, Grätzel M, Hu X. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angewandte Chemie International Edition, 2015, 54(2): 664–667
13 Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co3+. Science, 2008, 321(5892): 1072–1075
https://doi.org/10.1126/science.1162018
14 Smith E D L, Prếvot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K J, Trudel S, Berlinguette C P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013, 340(6128): 60–63
https://doi.org/10.1126/science.1233638
15 McCrory C L, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987
https://doi.org/10.1021/ja407115p
16 Anantharaj S, Rao Ede S, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097
https://doi.org/10.1021/acscatal.6b02479
17 Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6(1): 6430
https://doi.org/10.1038/ncomms7430
18 Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
19 Hall D E. Electrodes for alkaline water electrolysis. Journal of the Electrochemical Society, 1981, 128(4): 740–746
https://doi.org/10.1149/1.2127498
20 Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. International Journal of Hydrogen Energy, 1982, 7(5): 405–410
https://doi.org/10.1016/0360-3199(82)90051-9
21 Brown D E, Mahmood M N, Man M C, Turner A K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution. Electrochimica Acta, 1984, 29(11): 1551–1556
https://doi.org/10.1016/0013-4686(84)85008-2
22 Raj I A, Vasu K I. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. Journal of Applied Electrochemistry, 1990, 20(1): 32–38
https://doi.org/10.1007/BF01012468
23 Nocera D G. The artificial leaf. Accounts of Chemical Research, 2012, 45(5): 767–776
https://doi.org/10.1021/ar2003013
24 Gong M, Zhou W, Tsai M C, Zhou J, Guan M, Lin M C, Zhang B, Hu Y, Wang D, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695
https://doi.org/10.1038/ncomms5695
25 Yan H. Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chemie International Edition, 2011, 50(1): 2674–2676
26 Sasaki K, Naohara H, Cai Y, Choi M, Liu P, Vukmirovic M B, Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel cell cathodes. Angewandte Chemie, 2010, 49(46): 8602–8607
https://doi.org/10.1002/anie.201004287
27 Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135
https://doi.org/10.1002/anie.200462335
28 Luo J, Wang L, Mott D, Njoki P N, Lin Y, He T, Xu Z, Wanjana B N, Lim I S, Zhong C J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Advanced Materials, 2008, 20(22): 4342–4347
https://doi.org/10.1002/adma.200703009
29 Liu Z, Jackson G I S, Eichhorn B W. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie, 2010, 49(18): 3173–3176
https://doi.org/10.1002/anie.200907019
30 Ghosh T, Vukmirovic M, Disalvo F, Adzic R R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. Journal of the American Chemical Society, 2010, 132(3): 906–907
https://doi.org/10.1021/ja905850c
31 Wang A L, Xu H, Feng J X, Ding L X, Tong Y X, Li G R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effect and synergistic effects for ethanol electrooxidation. Journal of the American Chemical Society, 2013, 135(29): 10703–10709
https://doi.org/10.1021/ja403101r
32 Xu H, Ding L X, Liang C L, Tong Y X, Li G R. High-performance polypyrrole functionalized PtPdelectrocatalysts based on PtPd@PPy@PtPd three-layered nanotube arrays for electrooxidation of small organic molecules. NPG Asia Materials, 2013, 5(5): e69
https://doi.org/10.1038/am.2013.54
33 Hu M J, Zhang Y, Lu S, Guo S R, Lin B, Zhang M, Yu S H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. Journal of the American Chemical Society, 2008, 130(35): 11606–11607
https://doi.org/10.1021/ja804467g
34 Cioffi N, Torsi L, Losito I, Franco C, Bari I, Chiavarone L, Scamarcio G, Tesakov V, Sabbatini L, Zambonin P. Electrosynthesis and analytical characterization of polypyrrole thin film. Journal of Materials Chemistry, 2001, 11: 1434–1440
https://doi.org/10.1039/b009857o
35 Zhang X, Bai R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir, 2003, 19(26): 10703–10709
https://doi.org/10.1021/la034893v
36 Jaramillo A, Spurlock L D, Young V, Toth A B. XPS characterization of nanosized overoxidized polypyrrole film on graphite electrodes. Analyst (London), 1999, 124(8): 1215–1221
https://doi.org/10.1039/a902578b
37 Bard A J, Faulkner L R. Electrochemical Method. New York: Wiley, 1980, 87
38 Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W, Xie Y. Defect-rivh MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 11(40): 5807–5813
https://doi.org/10.1002/adma.201302685
39 Chen Z, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F. Jaramillo. F. Core-shell MoO3-MoS2 nanowire fore hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 2011, 11(10): 4168–4175
https://doi.org/10.1021/nl2020476
40 Benck J D, Chen Z, Kuritzky L Y, Forman A J, Jaramillo T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insight into the origin of their catalytic activity. ACS Catalysis, 2012, 2(9): 1916–1923
https://doi.org/10.1021/cs300451q
41 Machado S A S, Tiengo J, Lima Neto P D, Avaca L A. The influence pf H-absorption on the cathodic response of high area nickel electrodes in alkaline solutions. Electrochimica Acta, 1994, 39(11): 1757–1761
https://doi.org/10.1016/0013-4686(94)85161-1
42 Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, 22(30): 15153–15159
https://doi.org/10.1039/c2jm31439h
43 Wu L, Li Q, Wu C H, Zhu H, Mendoza-Garcia A, Shen B, Guo J, Sun S. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. Journal of the American Chemical Society, 2015, 137(22): 7071–7074 doi:10.1021/jacs.5b04142
[1] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[2] Evelyn Chalmers, Yi Li, Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
[3] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[4] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[5] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[6] Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
[7] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
[8] WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang. Preparation and sedimentation behavior of conductive polymeric nanoparticles[J]. Front. Chem. Sci. Eng., 2008, 2(3): 231-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed