Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 425-432    https://doi.org/10.1007/s11705-018-1726-7
RESEARCH ARTICLE
A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution
Mingyu Pi1, Xiaodeng Wang1, Dingke Zhang2, Shuxia Wang1, Shijian Chen1()
1. College of Physics, Chongqing University, Chongqing 401331, China
2. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
 Download: PDF(336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.

Keywords WP2      nanosheet arrays      hydrogen evolution electrocatalyst      flexible electrode     
Corresponding Author(s): Shijian Chen   
Just Accepted Date: 26 March 2018   Online First Date: 25 July 2018    Issue Date: 18 September 2018
 Cite this article:   
Mingyu Pi,Xiaodeng Wang,Dingke Zhang, et al. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1726-7
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/425
Fig.1  (a) Schematic diagram of the preparation for WP2 NSs/CC; (b) crystal structure of WP2 (W: gray sphere, P: purple sphere); (c) XRD data for bare CC, WO3 NSs/CC and WP2 NSs/CC
Fig.2  SEM images for (a, c) WO3 NSs/CC and (b, d) WP2 NSs/CC
Fig.3  (a) TEM and (b) HR-TEM images for WP2 NSs; (c–f) EDX elemental mappings for WP2 NSs
Fig.4  (a) Polarization curves for WP2 NSs/CC, WP2 NPs/CC, bare CC and commercial Pt/C, and (b) the corresponding Tafel plots; (c) polarization curves for WP2 NSs/CC initial and after 1000 CV scanning; (d) the current density vs. time curve for WP2 NSs/CC at constant potential of 135 mV (vs. RHE) for 60 h
Fig.5  (a) Microcosmic reaction mechanism of hydrogen evolution on the surface of WP2 NSs/CC; (b) schematic depictions of WP2 nanosheets and nanoparticles bursting larger H2 bubbles that usually pin at the film surface, and the WP2 nanosheets can wick the formed hydrogen bubbles and maintain the catalyst-electrolyte interface effectively
Fig.6  Nyquist plots and data fitting to a simplified circuit for WP2 NSs/CC and WP2 NPs/CC
Electrode Rs/W Rct/W CPE/mF
WP2 NSs/CC
WP2 NPs/CC
3.9
4.3
10
18
6
2
Tab.1  Fitted data value of Rs, Rct and CPE for the WP2 NSs/CC and WP2 NPs/CC
Fig.7  Energy barrier for H atom adsorption on the surface of Pt, WP2, MoP2, MoP, MoS2/CoSe2, Co-FeS2/CNT and FeS2/CNT catalysts
Fig.8  Hydrogen evolution process diagram for the WP2 NSs/CC
1 Chow J, Kopp R J, Portney P R. Energy resources and global development. Science, 2003, 302(5650): 1528–1531
https://doi.org/10.1126/science.1091939 pmid: 14645838
2 Xie L S, Ren X, Liu Q, Cui G W, Ge R W, Asiri A M, Sun X P, Zhang Q J, Chen L A. Ni(OH)2-PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(5): 1967–1970
https://doi.org/10.1039/C7TA09990H
3 Liu Q, Gu S, Li C M. Electrodeposition of nickel-phosphorus nanoparticles film as a janus electrocatalyst for electro-splitting of water. Journal of Power Sources, 2015, 299: 342–346
https://doi.org/10.1016/j.jpowsour.2015.09.027
4 Liu T T, Xie L S, Yang J H, Kong R M, Du G, Asiri A M, Sun X P, Zhang Q J, Chen L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–1845
https://doi.org/10.1002/celc.201700392
5 Yuan W, Wang X, Zhong X, Li C M. CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Applied Materials & Interfaces, 2016, 8(32): 20720–20729
https://doi.org/10.1021/acsami.6b05304 pmid: 27467887
6 Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(25): 9267–9270
https://doi.org/10.1021/ja403440e pmid: 23763295
7 Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie International Edition, 2014, 53(36): 9577–9581
https://doi.org/10.1002/anie.201403842 pmid: 25044801
8 Pu Z, Liu Q, Asiri A M, Sun X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 2014, 6(24): 21874–21879
https://doi.org/10.1021/am5060178 pmid: 25456493
9 Du H F, Gu S, Liu R W, Li C M. Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40(41): 14272–14278
https://doi.org/10.1016/j.ijhydene.2015.02.099
10 McKone J R, Warren E L, Bierman M J, Boettcher S W, Brunschwig B S, Lewis N S, Gray H B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy & Environmental Science, 2011, 4(9): 3573–3583
https://doi.org/10.1039/c1ee01488a
11 Liu R W, Gu S, Du H F, Li C M. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17263–17267
https://doi.org/10.1039/C4TA03638G
12 Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity. RSC Advances, 2016, 6(19): 15724–15730
https://doi.org/10.1039/C5RA26269K
13 Xing Z C, Liu Q, Asiri A M, Sun X P. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 2015, 5(1): 145–149
https://doi.org/10.1021/cs5014943
14 Du H F, Gu S, Liu R W, Li C M. Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2015, 278: 540–545
https://doi.org/10.1016/j.jpowsour.2014.12.095
15 Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo J, Lei X, Jiang L. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Advanced Materials, 2014, 26(17): 2683–2687, 2615
https://doi.org/10.1002/adma.201304759 pmid: 24488883
16 Faber M S, Dziedzic R, Lukowski M A, Kaiser N S, Ding Q, Jin S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053–10061
https://doi.org/10.1021/ja504099w pmid: 24901378
17 Zhang L, Xiong K, Chen S G, Li L, Deng Z H, Wei Z D. In situ growth of ruthenium oxide-nickel oxide nanorod arrays on nickel foam as a binder-free integrated cathode for hydrogen evolution. Journal of Power Sources, 2015, 274: 114–120 doi:10.1016/j.jpowsour.2014.10.038
18 Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6(22): 13440–13445
https://doi.org/10.1039/C4NR04866K pmid: 25293654
19 You B, Jiang N, Sheng M, Gul S, Yano J, Sun Y. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chemistry of Materials, 2015, 27(22): 7636–7642
https://doi.org/10.1021/acs.chemmater.5b02877
20 Li D, Baydoun H, Verani C N, Brock S L. Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138(12): 4006–4009
https://doi.org/10.1021/jacs.6b01543 pmid: 26972408
21 Niu Z, Jiang J, Ai A. Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting. Electrochemistry Communications, 2015, 56: 56–60
https://doi.org/10.1016/j.elecom.2015.04.010
22 Wu T L, Pi M Y, Zhang D K, Chen S J. Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2016, 328: 551–557
https://doi.org/10.1016/j.jpowsour.2016.08.050
23 Liu Y, Li J, Li W Z, Yang Y H, Li Y M, Chen Q Y. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. Journal of Physical Chemistry C, 2015, 119(27): 14834–14842
https://doi.org/10.1021/acs.jpcc.5b00966
24 Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(8): 2624–2629
https://doi.org/10.1039/C4EE00957F
25 Kucernak A R J, Naranammalpuram Sundaram V N. Nickel phosphide: The effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17435–17445
https://doi.org/10.1039/C4TA03468F
26 Callejas J F, Read C G, Popczun E J, Mcenaney J M, Schaak R E. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chemistry of Materials, 2015, 27(10): 3769–3774
https://doi.org/10.1021/acs.chemmater.5b01284
27 Guo D, Luo Y, Yu X, Li Q, Wang T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy, 2014, 8: 174–182
https://doi.org/10.1016/j.nanoen.2014.06.002
28 Wan L, Zhang J, Chen Y, Zhong C, Hu W, Deng Y. Nickel phosphide nanosphere: A high-performance and cost effective catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41(45): 20515–20522
https://doi.org/10.1016/j.ijhydene.2016.08.146
29 Liu D, Lu Q, Luo Y, Sun X, Asiri A M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale, 2015, 7(37): 15122–15126
https://doi.org/10.1039/C5NR04064G pmid: 26355688
30 Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Phase-controlled synthesis and comparative study of α-and β-WP2 submicron particles as efficient electrocatalysts for hydrogen evolution. Electrochimica Acta, 2016, 216(9): 304–311
https://doi.org/10.1016/j.electacta.2016.09.038
31 Wang J, Zheng Y, Nie F Q, Zhai J, Jiang L. Air bubble bursting effect of lotus leaf. Langmuir, 2009, 25(24): 14129–14134
https://doi.org/10.1021/la9010828 pmid: 19583224
32 Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(6): 5982–5988
https://doi.org/10.1038/ncomms6982 pmid: 25585911
33 Wang D Y, Gong M, Chou H L, Pan C J, Chen H A, Wu Y, Lin M C, Guan M, Yang J, Chen C W, Wang Y L, Hwang B J, Chen C C, Dai H. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 2015, 137(4): 1587–1592
https://doi.org/10.1021/ja511572q pmid: 25588180
[1] FCE-18007-OF-PM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed