Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 450-456    https://doi.org/10.1007/s11705-018-1735-6
RESEARCH ARTICLE
Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives
Jintang Huang1, Youju Huang1(), Si Wu1,2()
1. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
2. Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(354 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Supramolecular assemblies (PS-b-P4VP(AzoR)) are fabricated by hydrogen-bonding azobenzene derivatives (AzoR) to poly(4-vinyl pyridine) blocks of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP). PS-b-P4VP(AzoR) forms phase separated nanostructures with a period of ~75–105 nm. A second length scale structure with a period of 2 µm is fabricated on phase separated PS-b-P4VP(AzoR) by laser interference ablation. Both the concentration and the substituent of AzoR in PS-b-P4VP(AzoR) affect the laser ablation process. The laser ablation threshold of PS-b-P4VP(AzoR) decreases as the concentration of AzoR increases. In PS-b-P4VP(AzoR) with different substituents (R= CN, H, and CH3), ablation thresholds follow the trend: PS-b-P4VP(AzoCN)<PS-b-P4VP(AzoCH3)<PS-b-P4VP(AzoH). This result indicates that the electron donor group (CH3) and the electron acceptor group (CN) can lower the ablation threshold of PS-b-P4VP(AzoR).

Keywords laser ablation      block copolymers      hydrogen-bond      azobenzene derivatives      supramolecular assembly     
Corresponding Author(s): Youju Huang,Si Wu   
Just Accepted Date: 19 April 2018   Online First Date: 02 August 2018    Issue Date: 18 September 2018
 Cite this article:   
Jintang Huang,Youju Huang,Si Wu. Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives[J]. Front. Chem. Sci. Eng., 2018, 12(3): 450-456.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1735-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/450
Fig.1  Chemical structures of used materials. The azo compounds AzoR (R= CN, H, and CH3) are hydrogen bonded to P4VP blocks of PS-b-P4VP
Fig.2  UV-vis absorption spectra of thin films of PS-b-P4VP(AzoCN)x (x = 0.05, 0.1, 0.3, and 0.5)
Fig.3  Schematic models of PS-b-P4VP(AzoR)x (a) before and (b) after interference irradiation. After irradiation, periodic ablated areas (interference patterns) appear on PS-b-P4VP(AzoR)x. (c) Calculated intensity distribution (top) and profile (bottom) of three beam interference
Fig.4  AFM height images of PS-b-P4VP(AzoCN)x with different x after exposed to interference beams. (a) x = 0.05, (b) x = 0.1, (c) x = 0.3, and (d) x = 0.5. Insets are AFM phase images, which show that phase separated nanostructures in PS-b-P4VP(AzoCN)x; (e) profiles along the lines in (a)–(d); (f) depths and diameters of the holes generated by interference irradiation. Note: The diameters are measured at half depths of the holes
Fig.5  UV-vis absorption spectra of (a) 10?5 mol?L?1 AzoR in THF and (b) thin films of PS-b-P4VP(AzoR)0.5
Fig.6  (a) AFM height images of PS-b-P4VP(AzoH)0.5 and (b) PS-b-P4VP(AzoCH3)0.5 after exposed to interference beams. Insets are AFM phase images of PS-b-P4VP(AzoR)0.5. The phase separated nanostructures are clearly visible in the AFM phase images; (c) profiles along the lines in (a), (b), and Fig. 4(d); (d) depths and diameters of the holes generated by interference irradiation. Note: the diameters are measured at half depths of the holes
Sample a/104 cm1 Threshold/(mJ?cm2)
PS-b-P4VP(AzoCN)0.05 0.57 \
PS-b-P4VP(AzoCN)0.3 3.61 81±10
PS-b-P4VP(AzoCN)0.5 5.35 47±10
PS-b-P4VP(AzoH)0.5 5.58 208±10
PS-b-P4VP(AzoCH3)0.5 5.75 165±10
Tab.1  Linear absorption coefficients (a) at 355 nm and ablation thresholds of PS-b-P4VP(AzoR)x
1 Lippert T, Dickinson J T. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chemical Reviews, 2003, 103(2): 453–486
https://doi.org/10.1021/cr010460q pmid: 12580639
2 Weis P, Wu S. Light-switchable azobenzene-containing macromolecules: From UV to near infrared. Macromolecular Rapid Communications, 2018, 39(1): 1700220
https://doi.org/10.1002/marc.201700220 pmid: 28643895
3 Huang J, Wu S, Beckemper S, Gillner A, Zhang Q, Wang K. All-optical fabrication of ellipsoidal caps on azobenzene functional polymers. Optics Letters, 2010, 35(16): 2711–2713
https://doi.org/10.1364/OL.35.002711 pmid: 20717432
4 Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
https://doi.org/10.1002/adma.201100250 pmid: 21374741
5 Huang J T, Beckemper S, Gillner A, Wang K Y. Tunable surface texturing by polarization-controlled three-beam interference. Journal of Micromechanics and Microengineering, 2010, 20(9): 095004
https://doi.org/10.1088/0960-1317/20/9/095004
6 Wohl C J, Belcher M A, Chen L, Connell J W. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces. Langmuir, 2010, 26(13): 11469–11478
https://doi.org/10.1021/la100958r pmid: 20446721
7 Patel R S, Wassick T A. Laser processes for multichip module’s high density multilevel thin film packaging. Laser Applications in Microelectronic and Optoelectronic Manufacturing II, 1997, 2991: 217–223
https://doi.org/10.1117/12.273739
8 Aoki H. Laser processing method to form an ink jet nozzle plate. US Patent, 1998
9 Weis P, Tian W, Wu S. Photoinduced liquefaction of azobenzene-containing polymers. Chemistry, 2018, 24(25): 6494–6505
https://doi.org/10.1002/chem.201704162 pmid: 29116667
10 Wu S, Huang J T, Beckemper S, Gillner A, Wang K Y, Bubeck C. Block copolymer supramolecular assemblies hierarchically structured by three-beam interference laser ablation. Journal of Materials Chemistry, 2012, 22(11): 4989–4995
https://doi.org/10.1039/c2jm16442f
11 Huang J, Beckemper S, Wu S, Shen J, Zhang Q, Wang K, Gillner A. Light driving force for surface patterning on azobenzene-containing polymers. Physical Chemistry Chemical Physics, 2011, 13(36): 16150–16158
https://doi.org/10.1039/c1cp21098j pmid: 21829840
12 Bates F S, Fredrickson G H. Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990, 41(1): 525–557
https://doi.org/10.1146/annurev.pc.41.100190.002521 pmid: 20462355
13 Bang J, Jeong U, Ryu Y, Russell T P, Hawker C J. Block copolymer nanolithography: Translation of molecular level control to nanoscale patterns. Advanced Materials, 2009, 21(47): 4769–4792
https://doi.org/10.1002/adma.200803302 pmid: 21049495
14 Cheng J Y, Ross C A, Smith H I, Thomas E L. Templated self-assembly of block copolymers: Top-down helps bottom-up. Advanced Materials, 2006, 18(19): 2505–2521
https://doi.org/10.1002/adma.200502651
15 Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 2017, 9(2): 145–151
https://doi.org/10.1038/nchem.2625 pmid: 28282043
16 Guo C H, Lee Y, Lin Y H, Strzalka J, Wang C, Hexemer A, Jaye C, Fischer D A, Verduzco R, Wang Q, Gomez E D. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer. Macromolecules, 2016, 49(12): 4599–4608
https://doi.org/10.1021/acs.macromol.6b00370
17 Hung C C, Chiu Y C, Wu H C, Lu C, Bouilhac C, Otsuka I, Halila S, Borsali R, Tung S H, Chen W C. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Advanced Functional Materials, 2017, 27(13): 1606161
https://doi.org/10.1002/adfm.201606161
18 Mitchell V D, Gann E, Huettner S, Singh C R, Subbiah J, Thomsen L, McNeill C R, Thelakkat M, Jones D J. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951
https://doi.org/10.1021/acs.macromol.7b00377
19 Yoo H G, Byun M, Jeong C K, Lee K J. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Advanced Materials, 2015, 27(27): 3982–3998
https://doi.org/10.1002/adma.201501592 pmid: 26061137
20 Wang J, Wu B, Li S, Sinawang G, Wang X, He Y. Synthesis and characterization of photoprocessable lignin-based azo bolymer. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4036–4042
https://doi.org/10.1021/acssuschemeng.6b00975
21 Wu S, Duan S Y, Lei Z Y, Su W, Zhang Z S, Wang K Y, Zhang Q J. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. Journal of Materials Chemistry, 2010, 20(25): 5202–5209
https://doi.org/10.1039/c000073f
22 Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564): 2407–2409
https://doi.org/10.1126/science.1067794 pmid: 11923526
23 Kuila B K, Stamm M. Block copolymer-small molecule supramolecular assembly in thin film: A novel tool for surface patterning of different functional nanomaterials. Journal of Materials Chemistry, 2011, 21(37): 14127–14134
https://doi.org/10.1039/c1jm10990a
24 Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M, Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet J M, Alivisatos A P, Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Materials, 2009, 8(12): 979–985
https://doi.org/10.1038/nmat2565 pmid: 19838181
25 Roland S, Gaspard D, Prud’homme R E, Bazuin C G. Morphology evolution in slowly dip-coated supramolecular PS-b-P4VP thin films. Macromolecules, 2012, 45(13): 5463–5476
https://doi.org/10.1021/ma3007398
26 Soininen A J, Tanionou I, ten Brummelhuis N, Schlaad H, Hadjichristidis N, Ikkala O, Raula J, Mezzenga R, Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17): 7091–7097
https://doi.org/10.1021/ma300820q
27 Huang W H, Chen P Y, Tung S H. Effects of annealing solvents on the morphology of block copolymer-based supramolecular thin films. Macromolecules, 2012, 45(3): 1562–1569
https://doi.org/10.1021/ma202415t
28 de Wit J, van Ekenstein G A, Polushkin E, Kvashnina K, Bras W, Ikkala O, ten Brinke G. Self-assembled poly(4-vinylpyridine)—surfactant systems using alkyl and alkoxy phenylazophenols. Macromolecules, 2008, 41(12): 4200–4204
https://doi.org/10.1021/ma800106t
29 Priimagi A, Vapaavuori J, Rodriguez F J, Faul C F J, Heino M T, Ikkala O, Kauranen M, Kaivola M. Hydrogen-bonded polymer-azobenzene complexes: Enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions. Chemistry of Materials, 2008, 20(20): 6358–6363
https://doi.org/10.1021/cm800908m
30 Liu Z Y, Lu G Y, Ma J. Tuning the absorption spectra and nonlinear optical properties of D-pi-A azobenzene derivatives by changing the dipole moment and conjugation length: A theoretical study. Journal of Physical Organic Chemistry, 2011, 24(7): 568–577
https://doi.org/10.1002/poc.1792
31 Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method. Journal of Physics. D, Applied Physics, 2001, 34(3): 364–372
https://doi.org/10.1088/0022-3727/34/3/320
32 Martukanitz R P. A critical review of laser beam welding. In: Schriempf J T, ed. Critical Review: Industrial Lasers and Applications. Bellingham: Spie-Int Soc Optical Engineering, 2005, 11–24
33 Hattori M. Thermal diffusivety of some linear polymers. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 1965, 202(1): 11–14
https://doi.org/10.1007/BF01497180
34 Morikawa J, Kobayahi A, Hashimoto T. Thermal diffusivity in a binary mixture of poly(phenylene oxide) and polystyrene. Thermochimica Acta, 1995, 267: 289–296
https://doi.org/10.1016/0040-6031(95)02486-7
35 Yesodha S K, Sadashiva Pillai C K, Tsutsumi N. Stable polymeric materials for nonlinear optics: A review based on azobenzene systems. Progress in Polymer Science, 2004, 29(1): 45–74
https://doi.org/10.1016/j.progpolymsci.2003.07.002
36 Liu R, Li Y H, Chang J, Xiao Q, Zhu H J, Sun W F. Photophysics and nonlinear absorption of 4,4′-diethynylazobenzene derivatives terminally capped with substituted aromatic rings. Journal of Photochemistry and Photobiology A Chemistry, 2012, 239: 47–54
https://doi.org/10.1016/j.jphotochem.2012.04.021
37 Tian L, Hu Z J, Shi P F, Zhou H P, Wu H Y, Tian Y P, Zhou Y F, Tao X T, Jiang M H. Synthesis and two-photon optical characterization of D-pi-D type schiff bases. Journal of Luminescence, 2007, 127(2): 423–430
https://doi.org/10.1016/j.jlumin.2007.02.040
38 Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Mikroyannidis J. Strong two photon absorption and photophysical properties of symmetrical chromophores with electron accepting edge substituents. Journal of Physical Chemistry A, 2008, 112(21): 4742–4748
https://doi.org/10.1021/jp711896f pmid: 18459758
[1] FCE-18013-OF-HJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed